精英家教网 > 初中数学 > 题目详情

在平面直角坐标系xOy中,已知关于x的二次函数y=x2+(k-1)x+2k-1的图象与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,其中k是一元二次方程p2-p-2=0的根,且k<0.
(1)求这个二次函数的解析式及A、B两点的坐标;
(2)若直线l:y=mx(m≠0)与线段BC交于点D(点D不与点B、C重合),则是否存在这样的直线l,使得以B、O、D为顶点的三角形与△ABC相似?若存在,求出该直线的解析式及点D的坐标;若不存在,请说明理由.

解:(1)∵k是方程p2-p-2=0的根,
∴k=-1,或k=2.
又k<0,
∴k=-1.
∴此二次函数的解析式为:y=x2-2x-3.
令y=0得x1=-1,x2=3
∵点A在点B的左侧
∴A(-1,0),B(3,0).

(2)假设满足条件的直线l存在
过点D作DE⊥x轴于点E
∵点A的坐标为(-1,0),点B的坐标为(3,0),点C的坐标为(0,-3)
∴AB=4,OB=OC=3,∠OBC=45°
∴BC=
要使以B、O、D为顶点的三角形与△ABC相似,已有∠OBD=∠ABC,
则只需①,或②成立即可.
①当
有BD=
在Rt△BDE中,
DE=BD•sin45°=,BE=BD•cos45°=
∴OE=OB-BE=3-=
∵点D在x轴的下方,
∴点D的坐标为().
将点D的坐标代入l:y=mx(m≠0)中,求得m=-3
∴满足条件的直线l的函数解析式为y=-3x.

②当
有BD=
同理可得:BE=DE=2,OE=OB-BE=3-2=1
∵点D在x轴下方
∴点D的坐标为(1,-2).
将点D的坐标代入y=mx(m≠0)中,求得m=-2
∴满足条件的直线l的函数解析式为y=-2x.
∴综上所述满足条件的直线l的解析式是:y=-3x或y=-2x;
点D的坐标为()或(1,-2).
分析:(1)由一元二次方程的解可知K值,从而可得二次函数的解析式,当y=0时,所得x的值就是A,B两点横坐标.
(2)准确运用二次函数的图象和性质,结合相似三角形对应线段的比例关系,可求出D点的坐标.
点评:本题要求数形结合,灵活运用相似三角形的判定定理,求出D点坐标,然后求出直线解析式.综合性较强,需要学生有较强的分析理解能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

13、在平面直角坐标系xOy中,已知点A(2,-2),在y轴上确定点P,使△AOP为等腰三角形,则符合条件的有
4
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知抛物线y=ax2+bx+c的对称轴是x=1,并且经过(-2,-5)和(5,-12)两点.
(1)求此抛物线的解析式;
(2)设此抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于C 点,D是线段BC上一点(不与点B、C重合),若以B、O、D为顶点的三角形与△BAC相似,求点D的坐标;
(3)点P在y轴上,点M在此抛物线上,若要使以点P、M、A、B为顶点的四边形是平行四边形,请你直接写出点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系xOy中,△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知|OA|:|OB|=1:5,|OB|=|OC|,△ABC的面积S△ABC=15,抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.
(1)求此抛物线的函数表达式;
(2)设E是y轴右侧抛物线上异于点B的一个动点,过点E作x轴的平行线交抛物线于另一点F,过点F作FG垂直于x轴于点G,再过点E作EH垂直于x轴于点H,得到矩形EFGH.则在点E的运动过程中,当矩形EFGH为正方形时,求出该正方形的边长;
(3)在抛物线上是否存在异于B、C的点M,使△MBC中BC边上的高为7
2
?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系xOy中,已知A(2,-2),B(0,-2),在坐标平面中确定点P,使△AOP与△AOB相似,则符合条件的点P共有
5
5
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).与△ABC与△ABD全等,则点D坐标为
(1,-1),(5,3)或(5,-1)
(1,-1),(5,3)或(5,-1)

查看答案和解析>>

同步练习册答案