【题目】如图1,△ABC中,AC=BC,∠ACB=90°,点P为AB上一点(异于A、B),BD⊥直线CP于D,AE⊥直线CP于E,点F为AB的中点,连接DF.
(1)可以把△ACE绕点F逆时针旋转 度(度数不超过180°)和△ 重合,则∠FDE= °.
(2)取CE的中点G,连接AD、FG,求证:AD=2FG.
(3)如图2,AB=8,等腰直角△MNH的斜边NH的中点也为点F,直线AM和直线CH交于点Q,连接BQ,当△MNH绕点F旋转一周时,请直接写出BQ长的取值范围.
【答案】(1)90,CBD,45;(2)见解析;(3)2-2≤BQ≤2+2
【解析】
(1)由等腰直角三角形的性质可得CF=AF=BF,CF⊥BF,由“AAS”可证△ACE≌△CBD,则可以把△ACE绕点F逆时针旋转90度和△CBD重合,可得CE=DB,EF=DF,可证△CFE≌△BFD,可得∠CFE=∠BFD,可证∠EFD=90°,可求解;
(2)取BD中点H,连接FH,由中点定义和三角形中位线定理可得CG=CE=BD=BH,AD∥FH,AD=2FH,由“SAS”可证△CFG≌△BFH,可得GF=FH,可得AD=2FG;
(3)如图2,连接CF,MF,由全等三角形的性质可求∠AQC=90°,可得点Q在以AC为直径的圆上运动,即可求解.
(1)如图1,连接CF,EF,
∵AC=BC,∠ACB=90°,点F为AB的中点,
∴CF=AF=BF,CF⊥BF,
∵AE⊥CD,BD⊥CD,
∴∠AEC=∠CDB=∠ACB=90°,
∴∠ACE+∠CAE=90°,∠ACE+∠DCB=90°,
∴∠CAE=∠DCB,且AC=BC,∠AEC=∠CDB=90°,
∴△ACE≌△CBD(AAS)
∴可以把△ACE绕点F逆时针旋转90度和△CBD重合,
∴CE=DB,EF=DF,且CF=BF,
∴△CFE≌△BFD(SSS)
∴∠CFE=∠BFD,且∠CFE+∠EFB=90°,
∴∠BFD+∠EFB=90°,
∴∠EFD=90°,且EF=DF,
∴∠FDE=45°,
故答案为:90,CBD,45;
(2)如图1,取BD中点H,连接FH,
∵点G是CE中点,点H是BD中点,点F是AB中点,且CE=BD,
∴CG=CE=BD=BH,AD∥FH,AD=2FH,
∵△CFE≌△BFD,
∴∠FCG=∠FBH,且CG=BH,CF=BF,
∴△CFG≌△BFH(SAS)
∴GF=FH,
∴AD=2FG;
(3)如图2,连接CF,MF,
∵AC=BC,∠ACB=90°,点F是AB中点,AB=8,
∴AF=CF=BF=4,CF⊥AB,AC=BC=4,
∵MN=MH,∠NMH=90°,点F是NH中点,
∴NF=FH=FM,MF⊥NH,
∴∠MFH=∠AFC=90°,
∴∠AFM=∠CFH,且AF=CF,FH=FM,
∴△AFM≌△CFH(SAS)
∴∠FAM=∠FCH,
∵∠FAM+∠CAM+∠ACF=90°,
∴∠CAM+∠ACF+∠FCH=90°,
∴∠AQC=90°,
∴点Q在以AC为直径的圆上运动,
∴当点Q在BO的延长线上时,BQ最大;当点Q在线段BO上时,BQ最小.
取AC中点O,连接BO,
∴CO=2,
∴BO===2,
∴BQ长的取值范围为
科目:初中数学 来源: 题型:
【题目】抛物线y1=x2+bx+c与直线y2=2x+m相交于A(1,4)、B(﹣1,n)两点.
(1)求y1和y2的解析式;
(2)直接写出y1﹣y2的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形网格中,每个小正方形的边长为1,格点△ABC(顶点在网格线的交点上)的顶点A、C的坐标分别为A(﹣3,5)、C(0,3).
(1)请在网格所在的平面内画出平面直角坐标系,并写出点B的坐标.
(2)将△ABC绕着原点顺时针旋转90°得△A1B1C1,画出△A1B1C1.
(3)在直线y=1上存在一点P,使PA+PC的值最小,请直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线点F.问:
(1)图中△APD与哪个三角形全等?并说明理由;
(2)求证:△APE∽△FPA;
(3)猜想:线段PC,PE,PF之间存在什么关系?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=kx+b(k≠0)与双曲线y=(m≠0)交于点A(﹣,2),B(n,﹣1).
(1)求直线与双曲线的解析式.
(2)点P在x轴上,如果S△ABP=3,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面直角坐标系中的图形M,N,给出如下定义:如果点P为图形M上任意一点,点Q为图形N上任意一点,那么称线段PQ长度的最小值为图形M,N的“近距离”,记作 d(M,N).若图形M,N的“近距离”小于或等于1,则称图形M,N互为“可及图形”.
(1)当⊙O的半径为2时,
①如果点A(0,1),B(3,4),那么d(A,⊙O)=_______,d(B,⊙O)= ________;
②如果直线与⊙O互为“可及图形”,求b的取值范围;
(2)⊙G的圆心G在轴上,半径为1,直线与x轴交于点C,与y轴交于点D,如果⊙G和∠CDO互为“可及图形”,直接写出圆心G的横坐标m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com