ÎÒÃÇѧϰÁËÒòʽ·Ö½âÖ®ºó¿ÉÒÔ½âijЩ¸ß´Î·½³Ì£®ÀýÈ磬һԪ¶þ´Î·½³Ìx2 + x − 2 = 0¿ÉÒÔͨ¹ýÒòʽ·Ö½â»¯Îª£º(x − 1) (x + 2) = 0£¬Ôò·½³ÌµÄÁ½¸ö½âΪx = 1ºÍx = −2£®·´Ö®£¬Èç¹ûx = 1ÊÇij·½³Ìax2 + bx + c = 0µÄÒ»¸ö½â£¬Ôò¶àÏîʽax2 + bx + c±ØÓÐÒ»¸öÒòʽÊÇ(x − 1)£®

ÔÚÀí½âÉÏÎĵĻù´¡ÉÏ£¬ÊÔÕÒ³ö¶àÏîʽx3 + x2 − 3x + 1µÄÒ»¸öÒòʽ£¬²¢½«Õâ¸ö¶àÏîʽÒòʽ·Ö½â£®

 

¡¾´ð°¸¡¿

(x2 + 2x − 1)

¡¾½âÎö¡¿½â£º¡ßx = 1ÊÇ·½³Ìx3 + x2 − 3x + 1 = 0µÄÒ»¸ö½â£¬

¡à¶àÏîʽx3 + x2 − 3x + 1µÄÒ»¸öÒòʽÊÇx − 1£®

Éèx3 + x2 − 3x + 1 = (x − 1) (x2 + ax − 1)

¡àx3 + x2 − 3x + 1 = x3 + ax2x2axx + 1

¡à1 = a − 1£¬− 3 = − a − 1£¬

¡àa = 2£¬¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤¡¤ £¨²»Óôý¶¨ÏµÊý·¨£¬ËµÀíÕýÈ·Ò²µÃ·Ö£©

¡àx3 + x2 − 3x + 1 = (x − 1) (x2 + 2x − 1)

 

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÎÒÃÇѧϰÁËÒòʽ·Ö½âÖ®ºó¿ÉÒÔ½âijЩ¸ß´Î·½³Ì£¬ÀýÈ磬һԪ¶þ´Î·½³Ìx2+x-2=0¿ÉÒÔͨ¹ýÒòʽ·Ö½â»¯Îª£º£¨x-1£©£¨x+2£©=0£¬Ôò·½³ÌµÄÁ½¸ö½âΪx=1ºÍx=-2£®·´Ö®£¬Èç¹ûx=1ÊÇij·½³Ìax2+bx+c=0µÄÒ»¸ö½â£¬Ôò¶àÏîʽax2+bx+c±ØÓÐÒ»¸öÒòʽÊÇ £¨x-1£©£¬ÔÚÀí½âÉÏÎĵĻù´¡ÉÏ£¬ÊÔÕÒ³ö¶àÏîʽx3+x2-3x+1µÄÒ»¸öÒòʽ£¬²¢½«Õâ¸ö¶àÏîʽÒòʽ·Ö½â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2011-2012ѧÄê½­ËÕÊ¡Ì«²ÖÊÐÆßÄ꼶ÆÚÖп¼ÊÔÊýѧ¾í£¨´ø½âÎö£© ÌâÐÍ£º½â´ðÌâ

ÎÒÃÇѧϰÁËÒòʽ·Ö½âÖ®ºó¿ÉÒÔ½âijЩ¸ß´Î·½³Ì£®ÀýÈ磬һԪ¶þ´Î·½³Ìx2 + x ?2 = 0¿ÉÒÔͨ¹ýÒòʽ·Ö½â»¯Îª£º(x ?1) (x + 2) = 0£¬Ôò·½³ÌµÄÁ½¸ö½âΪx = 1ºÍx = ?2£®·´Ö®£¬Èç¹ûx = 1ÊÇij·½³Ìax2 + bx + c = 0µÄÒ»¸ö½â£¬Ôò¶àÏîʽax2 + bx + c±ØÓÐÒ»¸öÒòʽÊÇ(x ?1)£®
ÔÚÀí½âÉÏÎĵĻù´¡ÉÏ£¬ÊÔÕÒ³ö¶àÏîʽx3 + x2 ?3x + 1µÄÒ»¸öÒòʽ£¬²¢½«Õâ¸ö¶àÏîʽÒòʽ·Ö½â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2011-2012ѧÄê½­ËÕÊ¡Ì«²ÖÊÐÆßÄ꼶ÏÂѧÆÚÆÚÖп¼ÊÔÊýѧÊÔ¾í£¨´ø½âÎö£© ÌâÐÍ£º½â´ðÌâ

ÎÒÃÇѧϰÁËÒòʽ·Ö½âÖ®ºó¿ÉÒÔ½âijЩ¸ß´Î·½³Ì£®ÀýÈ磬һԪ¶þ´Î·½³Ìx2 + x ? 2 = 0¿ÉÒÔͨ¹ýÒòʽ·Ö½â»¯Îª£º(x ? 1) (x + 2) = 0£¬Ôò·½³ÌµÄÁ½¸ö½âΪx = 1ºÍx = ?2£®·´Ö®£¬Èç¹ûx = 1ÊÇij·½³Ìax2 + bx + c = 0µÄÒ»¸ö½â£¬Ôò¶àÏîʽax2 + bx + c±ØÓÐÒ»¸öÒòʽÊÇ(x ? 1)£®
ÔÚÀí½âÉÏÎĵĻù´¡ÉÏ£¬ÊÔÕÒ³ö¶àÏîʽx3 + x2 ? 3x + 1µÄÒ»¸öÒòʽ£¬²¢½«Õâ¸ö¶àÏîʽÒòʽ·Ö½â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º2014½ì½­ËÕÊ¡Ì«²ÖÊÐÆßÄ꼶ÏÂѧÆÚÆÚÖп¼ÊÔÊýѧÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÎÒÃÇѧϰÁËÒòʽ·Ö½âÖ®ºó¿ÉÒÔ½âijЩ¸ß´Î·½³Ì£®ÀýÈ磬һԪ¶þ´Î·½³Ìx2 + x − 2 = 0¿ÉÒÔͨ¹ýÒòʽ·Ö½â»¯Îª£º(x − 1) (x + 2) = 0£¬Ôò·½³ÌµÄÁ½¸ö½âΪx = 1ºÍx = −2£®·´Ö®£¬Èç¹ûx = 1ÊÇij·½³Ìax2 + bx + c = 0µÄÒ»¸ö½â£¬Ôò¶àÏîʽax2 + bx + c±ØÓÐÒ»¸öÒòʽÊÇ(x − 1)£®

ÔÚÀí½âÉÏÎĵĻù´¡ÉÏ£¬ÊÔÕÒ³ö¶àÏîʽx3 + x2 − 3x + 1µÄÒ»¸öÒòʽ£¬²¢½«Õâ¸ö¶àÏîʽÒòʽ·Ö½â£®

 

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸