精英家教网 > 初中数学 > 题目详情
已知抛物线y=-
1
2
x2+bx+4上有不同的两点E(k+3,0)和F(-k-1,0).
(1)求抛物线的解析式.
(2)如图,抛物线y=-
1
2
x2+bx+4与x轴和y轴的正半轴分别交于点A和B,M为AB的中点,∠PMQ在AB的同侧以M为中心旋转,且∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D.设AD的长为m(m>0),BC的长为n,求n和m之间的函数关系式.
(3)当k>0且∠PMQ的边过点F时,求m、n的值.
(1)抛物线y=-
1
2
x2+bx+4
的对称轴为x=-
b
2×(-
1
2
)
=b
. 
∵抛物线上不同两个点E(k+3,0)和F(-k-1,0)的纵坐标相同,
∴点E和点F关于抛物线对称轴对称,则 b=
(k+3)+(-k-1)
2
=1
,且k≠-2.
∴抛物线的解析式为y=-
1
2
x2+x+4
. 
          
(2)∵抛物线y=-
1
2
x2+x+4
与x轴的交点为A(4,0),与y轴的交点为B(0,4),
∴AB=4
2
,AM=BM=2
2
.                
在∠PMQ绕点M在AB同侧旋转过程中,∠MBC=∠DAM=∠PMQ=45°,
在△BCM中,∠BMC+∠BCM+∠MBC=180°,即∠BMC+∠BCM=135°,
在直线AB上,∠BMC+∠PMQ+∠AMD=180°,即∠BMC+∠AMD=135°.
∴∠BCM=∠AMD.
故△BCM△AMD.                    
BC
AM
=
BM
AD

即 
n
2
2
=
2
2
m

n=
8
m

故n和m之间的函数关系式为n=
8
m
(m>0).  
       
(3)∵F(-k-1,0)在y=-
1
2
x2+x+4
上,
-
1
2
(-k-1)2+(-k-1)+4=-k2+1

化简得,k2-4k+3=0,
∴k1=1,k2=3.    
∵k>0,
∴F(-2,0)或(-4,0).            
①当MF过M(2,2)和F(-2,0),设MF为y=kx+b,
则 
2k+b=2
-2k+b=0.

解得,
k=
1
2
b=1.

∴直线MF的解析式为y=
1
2
x+1

直线MF与x轴交点为(-2,0),与y轴交点为(0,1).
若MP过点F(-2,0),则n=4-1=3,m=
8
3

若MQ过点F(-2,0),则m=4-(-2)=6,n=
4
3
.  
②MF过M(2,2)和F1(-4,-8),设MF为y=kx+b,
2k+b=2
-4k+b=-8

解得
k=
5
3
b=-
4
3

∴直线MF的解析式为 y=
5
3
x-
4
3

直线MF与x轴交点为(
4
5
,0),与y轴交点为(0,-
4
3
);
若MP过点F(-4,-8),则n=4-(-
4
3
)=
16
3
,m=
3
2

若MQ过点F(-4,-8),则m=4-
4
5
=
16
5
,n=
5
2

故当
m1=
8
3
n1=3
m2=6
n2=
4
3
m3=
3
2
n3=
16
3
m4=
16
5
n4=
5
2
时,∠PMQ的边过点F.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

抛物线y=x2+bx+c经过点(0,3)和(-1,0),那么抛物线的解析式是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知二次函数的图象经过点A(1,0)且与直线y=
3
4
x+3相交于B、C两点,点B在x轴上,点C在y轴上.
(1)求二次函数的解析式及函数的顶点坐标
(2)如果P(x,y)是线段BC上的动点,O为坐标原点,试求△PAB的面积S与x之间的函数关系式,并写出自变量取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,抛物线经过了边长为1的正方形ABOC的三个顶点A,B,C,则抛物线的解析式为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,四边形ABCD满足,CDAB,且A、B在x轴上,点D(0,6),若tan∠DAO=2,AB:AO=1:1.
(1)A点坐标为(______),B点坐标为(______);
(2)求过A、B、D三点的抛物线方程;
(3)若(2)中抛物线过点C,求C点坐标;
(4)若动点P从点C出发沿C?B?x正方向,同时Q点从点A出发沿A?B?C方向(终点C)运动,且P、Q两点运动速度分别为
5
个单位/秒,1个单位/秒,若设运动时间为x秒,试探索△BPQ的形状,并说明相应x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2-2x-3与x轴交A、B两点(A点在B点左侧),直线l与抛物线交于A、C两点,其中C点的横坐标为2.
(1)求A、B两点的坐标及直线AC的函数表达式;
(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;
(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=x2+4x与x轴分别相交于点B、O,它的顶点为A,连接AB,AO.
(1)求点A的坐标;
(2)以点A、B、O、P为顶点构造直角梯形,请求一个满足条件的顶点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=
1
2
mx2-
3
2
mx-2m交x轴于A(x1,0),B(x2,0)交y轴负半轴于C点,且x1<0<x2,(AO+OB)2=12CO+1.
(1)求抛物线的解析式;
(2)在x轴的下方是否存在着抛物线上的点P,使∠APB为锐角?若存在,求出P点的横坐标的范围;若不存在,请说明理由.
(3)如图点E(2,-5),将直线CE向上平移a个单位与抛物线交于M,N两点,若AM=AN,求a的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线y=(k2-2)x2-4kx+m的对称轴是直线x=2,且它的最低点在直线y=-2x+2上,求:
(1)函数解析式;
(2)若抛物线与x轴交点为A、B与y轴交点为C,求△ABC面积.

查看答案和解析>>

同步练习册答案