精英家教网 > 初中数学 > 题目详情
14.【观察发现】(1)如图1,四边形ABCD和四边形AEFG都是正方形,且点E在边AB上,连接DE和BG,猜想线段DE与BG的数量关系和位置关系.(只要求写出结论,不必说出理由)
【深入探究】(2)如图2,将图1中正方形AEFG绕点A逆时针旋转一定的角度,其他条件与观察发现中的条件相同,观察发现中的结论是否还成立?请根据图2加以说明.
【拓展应用】(3)如图3,直线l上有两个动点A、B,直线l外有一点动点Q,连接QA,QB,以线段AB为边在l的另一侧作正方形ABCD,连接QD.随着动点A、B的移动,线段QD的长也会发生变化,若QA,QB长分别为$3\sqrt{2}$,6保持不变,在变化过程中,线段QD的长是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

分析 (1)根据正方形的性质,由SAS证明△BAG≌△DAE,得出DE=BG,∠ABG=∠ADE,再由角的互余关系证出DE⊥BG即可;
(2)同(1)证明△BAG≌△DAE,从而证明结论;
(3)以OA为边作正方形QAGF,连接QG、BG,则QC=$\sqrt{2}$OA=4,当G、Q、B三点共线时,BG最长,此时BC=QC+QB=8,从而得出答案.

解答 (1)解:DE=BG,DE⊥BG;理由如下:
延长DE交BG于H,如图1所示:
∵四边形ABCD、四边形AEFG都是正方形,
∴AB=AD,AG=AE,∠EAD=∠BAG=90°,
在△BAG与△DAE中,$\left\{\begin{array}{l}{AB=AD}&{\;}\\{∠BAG=∠EAD}&{\;}\\{AG=AE}&{\;}\end{array}\right.$,
∴△BAG≌△DAE(SAS),
∴DE=BG,∠ABG=∠ADE,
∵∠AGB+∠ABG=90°,
∴∠AGB+∠ADE=90°,
∴∠DHG=90°,
∴DE⊥BG;
(2)解:(1)中的结论成立,即DE=BG,DE⊥BG;
理由如下:如图2所示,
∵四边形ABCD、四边形AEFG都是正方形,
∴BA=AD,AG=AE,∠BAD=∠EAG=90°,
∴∠BAG+∠BAE=∠EAG+∠BAE,
即∠BAG=∠DAE,在△BAG与△DAE中,$\left\{\begin{array}{l}{AB=AD}&{\;}\\{∠BAG=∠EAD}&{\;}\\{AG=AE}&{\;}\end{array}\right.$,
∴△BAG≌△DAE(SAS),
∴DE=BG,∠ABG=∠ADE
∵∠AMD+∠ADE=90°,∠AMD=∠BME,
∴∠BME+∠ABG=90°,
∴∠DNB=90°,
∴DE⊥BG;
(3)解:QD存在最大值;理由如下:
以QA为边作正方形QAGF,连接QG、BG,如图3所示:
则QG=$\sqrt{2}$QA=4,
由(2)可得:QD=BG,
当G、Q、B三点共线时,BG最长,
此时BC=QG+QB=4+4=8,
即线段QD长的最大值为8.

点评 本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、角的互余关系、对顶角相等、三点共线等知识;本题综合性强,证明三角形全等是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

4.“国庆节大酬宾”,某商场设计的促销活动如下:在一个不透明的箱子里放有3个质地相同的小球,并在球上分别标有“5元”、“10元”和“15元”的字样,规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回).商场根据两个小球所标金额和返还相等价格的购物券,购物券可以在本商场消费,某顾客刚好消费300元.
(1)该顾客最多可得到25元购物券;
(2)请你用画树状图和列表的方法,求出该顾客所得购物券的金额不低于25元的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.计算:(-$\frac{1}{4}$)-1+(-2)2×20160-($\frac{1}{3}$)-2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

2.如图,从地面上C、D两处望山顶A,仰角分别为30°和45°,若C、D两处相距200米,则山高AB为(  )
A.100($\sqrt{3}$+1)米B.100米C.100$\sqrt{2}$D.200$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,∠AOC的平分线交AB于点D,E为BC的中点,已知A(0,4)、C(5,0)二次函数y=ax2+bx的图象经过D,C两点

(1)求该二次函数的表达式;
(2)F,G分别为对称轴、x轴上的动点,首尾顺次连接D,E,G,F构成四边形DEGF,求四边形DEGF周长的最小值;
(3)抛物线的对称轴上是否存在点P,使△ODP为等腰三角形?若存在,直接写出点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.某中学校运动会上矩形4×100米的班级接力赛,八(2)班参加接力赛的有甲、乙、丙、丁四名同学.
(1)求甲跑最后一棒(第四棒)的概率;
(2)已知速度最快的甲跑完最后一棒(第四棒),在乙、丙、丁所跑的第一、二、三棒中,求乙、丙相邻的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,直线y=2x-6与反比例函数y=$\frac{k}{x}$(k>0)的图象交于点A(4,2),与x轴交于点B.
(1)求k的值及点B的坐标;
(2)当x-1<x<0或x>4时,2x-6>$\frac{k}{x}$(k>0);
(3)在x轴上是否存在点C,使得△ABC为等腰三角形,且AC=AB?若存在,求出点C的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.一个袋子中装有大小完全相同的3个乒乓球,其中2个白色,1个黄色.请你用它为甲、乙两位同学设计一个能决定胜负的公平的摸球游戏规则.并说明公平的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F,请你认真阅读下面关于这个图的探究片段,完成所提出的问题.

(1)探究1:小强看到图后,很快发现AE=EF,这需要证明AE和EF所在的两个三角形全等,但△ABE和△ECF显然不全等,考虑到点E是边BC的中点,因此可以选取AB的中点M,连接EM(图1)后尝试着完成了证明,请你写出小强的证明过程.
(2)探究2:小强继续探索,如图2,若把条件“点E是边BC的中点”改为“点E是边BC上的任意一点”,其余条件不变,发现AE=EF仍然成立,请你证明这一结论.
(3)探究3:小强进一步还想试试,如图3,若把条件“点E是边BC的中点”改为“点E是边BC延长线上的一点”,其余条件仍不变,那么结论AE=EF是否成立呢?若成立请你完成证明过程给小强看,若不成立请你说明理由.

查看答案和解析>>

同步练习册答案