【题目】如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.
(1)当∠BQD=30°时,求AP的长;
(2)证明:在运动过程中,点D是线段PQ的中点;
(3)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.
【答案】(1)2;(2)证明见解析;(3)3.
【解析】试题分析:(1)先判断出∠QPC是直角,再利用含30°的直角三角形的性质得出QC=2PC,建立方程求解决即可;
(2)先作出PF∥BC得出∠PFA=∠FPA=∠A=60°,进而判断出△DQB≌△DPF得出DQ=DP即可得出结论;
(3)利用等边三角形的性质得出EF=AF,借助DF=DB,即可得出DF=BF,最后用等量代换即可.
试题解析:(1)解:设AP=x,则BQ=x,
∵∠BQD=30°,∠C=60°,
∴∠QPC=90°,
∴QC=2PC,即x+6=2(6-x),
解得x=2,
即AP=2.
(2)证明:如图,
过P点作PF∥BC,交AB于F,
∵PF∥BC,
∴∠PFA=∠FPA=∠A=60°,
∴PF=AP=AF,
∴PF=BQ,
又∵∠BDQ=∠PDF,∠DBQ=∠DFP,
∴△DQB≌△DPF,
∴DQ=DP即D为PQ中点,
(3)运动过程中线段ED的长不发生变化,是定值为3,
理由:∵PF=AP=AF,PE⊥AF,
∴EF=AF,
又∵△DQB≌△DPF,
∴DF=DB,即DF=BF,
∴ED=EF+DF= (AF+BF)=AB=3.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.
(1)求证:△DEF是等腰三角形;
(2)当∠A=50°时,求∠DEF的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列事件中,最适合采用普查的是( )
A.对某班全体学生出生月份的调查B.对全国中学生节水意识的调查
C.对某批次灯泡使用寿命的调查D.对山西省初中学生每天阅读时间的调查
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC.中,AB=BC,将△ABC绕点B顺时针旋转α度,得到△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于点D、F,下列结论:①∠CDF=α,②A1E=CF,③DF=FC,④A1F=CE.其中正确的是 (写出正确结论的序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,把正方形ABCD绕点C按顺时针方向旋转45°得到正方形A′B′CD′(此时,点B′落在对角线AC上,点A′落在CD的延长线上),A′B′交AD于点E,连接AA′、CE.
求证:(1)△ADA′≌△CDE;
(2)直线CE是线段AA′的垂直平分线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知射线CB∥OA,∠C=∠OAB,
(1)求证:AB∥OC;
(2)如图2,E、F在CB上,且满足∠FOB=∠AOB,OE平分∠COF.
①当∠C=110°时,求∠EOB的度数.
②若平行移动AB,那么∠OBC :∠OFC的值是否随之发生变化?若变化,找出变
化规律;若不变,求出这个比值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com