【题目】如图,小华和小康想用标杆来测量河对岸的树AB的高,两人在确保无安全隐患的情况下,小康在F处竖立了一根标杆EF,小华走到C处时,站立在C处看到标杆顶端E和树的顶端B在一条直线上,此时测得小华的眼睛到地面的距离DC=16米;然后,小华在C处蹲下,小康平移标杆到H处时,小华恰好看到标杆顶端G和树的顶端B在一条直线上,此时测得小华的眼睛到地面的距离MC=0.8米.已知EF=GH=2.4米,CF=2米,FH=1.6米,点C、F、H、A在一条直线上,点M在CD上,CD⊥AC,EF⊥AC,CH⊥AC,AB⊥AC,根据以上测量过程及测量数据,请你求出树AB的高度.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A在一次函数y=x位于第一象限的图象上运动,点B在x轴正半轴上运动,在AB右侧以它为边作矩形ABCD,且AB=2,AD=1,则OD的最大值是( )
A.B.+2C.+2D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形纸片ABCD中,AB=4,BC=10,G是BC边上一点,沿AG折叠△ABG,点B的落点为P,GP交AD于点E. 若E是AD的中点,则BG的长是_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线()与轴交于A、B两点(点B在A的右侧),与轴交于点C,D是抛物线的顶点.
(1)当时,求顶点D 的坐标
(2)若OD = OB,求的值;
(3)设E为A,B两点间抛物线上的一个动点(含端点A,B),过点E作EH⊥轴,垂足为H,交直线BC于点F. 记线段EF的长为t,若t的最大值为,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.
(1)求证:CD2=CACB;
(2)求证:CD是⊙O的切线;
(3)过点B作⊙O的切线交CD的延长线于点E,若BC=12,tan∠CDA=,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某建筑物的顶部有一块标识牌 CD,小明在斜坡上 B 处测得标识牌顶部C 的仰角为 45°, 沿斜坡走下来在地面 A 处测得标识牌底部 D 的仰角为 60°,已知斜坡 AB 的坡角为 30°,AB=AE=10 米.则标识牌 CD 的高度是( )米.
A.15-5B.20-10C.10-5D.5-5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小雨、小华、小星暑假到某超市参加社会实践活动,在活动中他们参加了某种水果的销售工作,已知该水果的进价为8元千克.他们通过市场调查发现:当销售单价为10元/千克时,那么每天可售出300千克;销售单价每上涨1元,每天的销售量就减少50千克.
(1)该超市销售这种水果,当销售单价不低于10元/千克时,请直接写出每天的销售量(千克)与销售单价(元千克)之间的函数关系式;
(2)一段时间后,发现这种水果每天的销售量均不低于250千克,则此时该超市销售这种水果每天获取的利润(元最大是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们定义:连结凸四边形一组对边中点的线段叫做四边形的“准中位线”.
(1)概念理解:
如图1,四边形中,为的中点,,是边上一点,满足,试判断是否为四边形的准中位线,并说明理由.
(2)问题探究:
如图2,中,,,,动点以每秒1个单位的速度,从点出发向点运动,动点以每秒6个单位的速度,从点出发沿射线运动,当点运动至点时,两点同时停止运动.为线段上任意一点,连接并延长,射线与点构成的四边形的两边分别相交于点,设运动时间为.问为何值时,为点构成的四边形的准中位线.
(3)应用拓展:
如图3,为四边形的准中位线,,延长分别与,的延长线交于点,请找出图中与相等的角并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,图2,△ABC是等边三角形,D、E分别是AB、BC边上的两个动点(与点A、B、C不重合),始终保持BD=CE.
(1)当点D、E运动到如图1所示的位置时,求证:CD=AE.
(2)把图1中的△ACE绕着A点顺时针旋转60°到△ABF的位置(如图2),分别连结DF、EF.
①找出图中所有的等边三角形(△ABC除外),并对其中一个给予证明;
②试判断四边形CDFE的形状,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com