精英家教网 > 初中数学 > 题目详情

【题目】如图,点是等边内一点,绕点按顺时针方向旋转,连接

1求证:是等边三角形;

2时,试判断的形状,并说明理由;

3探究:当为多少度时,是等腰三角形?

【答案】1见解析2直角三角形;3110°125°140°

【解析】

试题1BOC≌△ADC,得出CO=CD,再由OCD=60°,得出结论;

2由勾股定理的逆定理判断AOD为直角三角形;

3因为AOD是等腰三角形,可得①∠AOD=ADO②∠ODA=OAD③∠AOD=DAO;若AOB=110°COD=60°BOC=190°-AODBOC=ADC=ADO+CDO①∠AOD=ADO可得α=125°,由②∠ODA=OAD可得α=110°,由③∠AOD=DAO可得α=140°

试题解析:1∵将△BOC绕点C按顺时针方向旋转60°得△ADC,

∴△BOC≌△ADC,∠OCD=60°,

∴CO=CD

∴△COD是等边三角形

2△AOD为直角三角形,

∵△ADC≌△BOC,

∴DA=OB=5,

∵△COD是等边三角形,

∴OD=OC=4,又OA=3,

∴DA2=OA2+OD2

∴△AOD为直角三角形

3因为△AOD是等腰三角形,

所以分三种情况:∠AOD=∠ADO∠ODA=∠OAD∠AOD=∠DAO

∵∠AOB=110°,∠COD=60°,

∴∠BOC=190°-∠AOD,

而∠BOC=∠ADC=∠ADO+∠CDO

∠AOD=∠ADO可得∠BOC=∠AOD+60°,求得α=125°;

∠ODA=∠OAD可得∠BOC=150°-∠AOD求得α=110°;

∠AOD=∠DAO可得∠BOC=240°-2∠AOD,求得α=140°;

综上可知α=125°、α=110°或α=140°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为(  )

A. 2 B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在北京市开展的首都少年先锋岗活动中,某数学小组到人民英雄纪念碑站岗执勤,并在活动后实地测量了纪念碑的高度. 方法如下:如图,首先在测量点A处用高为1.5m的测角仪AC测得人民英雄纪念碑MN顶部M的仰角为35°,然后在测量点B处用同样的测角仪BD测得人民英雄纪念碑MN顶部M的仰角为45°,最后测量出AB两点间的距离为15m,并且NBA三点在一条直线上,连接CD并延长交MN于点E. 请你利用他们的测量结果,计算人民英雄纪念碑MN的高度.

(参考数据:sin35°≈0.6cos35°≈0.8tan35°≈0.7

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将ABC绕点C顺时针旋转90°得到EDC.若点A,D,E在同一条直线上,∠ACB=20°,则∠ADC的度数是(  )

A. 55° B. 60° C. 65° D. 70°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为4的正方形ABCD内接于O,点E上的一动点(不与点AB重合)F上的一点连接OEOF分别与交ABBC于点GHEOF90°连接GH有下列结论

;②△OGH是等腰直角三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为.其中正确的是____________(把你认为正确结论的序号都填上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点OAB中点,点P为直线BC上的动点(不与点B、点C重合),连接OCOP,将线段OP绕点P顺时针旋转60°,得到线段PQ,连接BQ

(1)如图1,当点P在线段BC上时,试猜想写出线段CPBQ的数量关系,并证明你的猜想;

(2)如图2,当点PCB延长线上时,(1)中结论是否成立?(直接写“成立”或“不成立”即可,不需证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,函数y=ax2+bx+c的图象过点(﹣1,0)和(m,0),请思考下列判断:abc<0;4a+c<2b;=1﹣am2+(2a+b)m+a+b+c<0;|am+a|=正确的是(  )

A. ①③⑤ B. ①②③④⑤ C. ①③④ D. ①②③⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y1kx+b的图象与反比例函数y2的图象交于点A(﹣3,2),Bn,﹣6)两点.

(1)求一次函数与反比例函数的解析式;

(2)求△AOB的面积;

(3)请直接写出y1y2x的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′AB,求∠BAB′的度数.

查看答案和解析>>

同步练习册答案