精英家教网 > 初中数学 > 题目详情

【题目】如图,在△BCE中,点A是边BE上一点,以AB为直径的⊙O与CE相切于点D,AD∥OC,点F为OC与⊙O的交点,连接AF.
(1)求证:CB是⊙O的切线;
(2)若∠ECB=60°,AB=6,求图中阴影部分的面积.

【答案】
(1)证明:连接OD,与AF相交于点G,

∵CE与⊙O相切于点D,

∴OD⊥CE,

∴∠CDO=90°,

∵AD∥OC,

∴∠ADO=∠DOC,∠DAO=∠BOC,

∵OA=OD,

∴∠ADO=∠DAO,

∴∠DOC=∠BOC,

在△CDO和△CBO中,

∴△CDO≌△CBO,

∴∠CBO=∠CDO=90°,

∴CB是⊙O的切线


(2)由(1)可知∠DOA=∠BCO,∠DOC=∠BOC,

∵∠ECB=60°,

∴∠DCO=∠BCO= ∠ECB=30°,

∴∠DOC=∠BOC=60°,

∴∠DOA=60°,

∵OA=OD,

∴△OAD是等边三角形,

∴AD=OD=OF,∵∠GOF=∠ADO,

在△ADG和△FOG中,

∴△ADG≌△FOG,

∴SADG=SFOG

∵AB=6,

∴⊙O的半径r=3,

∴S=S扇形ODF= = π


【解析】(1)欲证明CB是⊙O的切线,只要证明BC⊥OB,可以证明△CDO≌△CBO解决问题.(2)首先证明S=S扇形ODF , 然后利用扇形面积公式计算即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】求证:菱形的两条对角线互相垂直. 已知:如图,四边形ABCD是菱形,对角线AC,BD交于点O.
求证:AC⊥BD.
以下是排乱的证明过程:
①又BO=DO;
②∴AO⊥BD,即AC⊥BD;
③∵四边形ABCD是菱形;
④∴AB=AD.
证明步骤正确的顺序是(

A.③→②→①→④
B.③→④→①→②
C.①→②→④→③
D.①→④→③→②

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一个不透明的袋子中有一个黑球a和两个白球b,c(除颜色外其他均相同).用树状图(或列表法)解答下列问题:
(1)小丽第一次从袋子中摸出一个球不放回,第二次又从袋子中摸出一个球.则小丽两次都摸到白球的概率是多少?
(2)小强第一次从袋子中摸出一个球,摸到黑球不放回,摸到白球放回;第二次又从袋子中摸出一个球,则小强两次都摸到白球的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系xOy中有四点A(﹣2,0),B(﹣1,0),C(0,1),D(0,2)在A、B、C、D中取两点与点O为顶点作三角形,所作三角形是等腰直角三角形的概率是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y1=x+m的图象与反比例函数y2= 的图象交于A、B两点,已知当x>1时,y1>y2;当0<x<1时,y1<y2
(1)求一次函数的函数表达式;
(2)已知反比例函数在第一象限的图象上有一点C到x轴的距离为2,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线x轴交于点A,与y轴交于点B,与直线yx交于点E,点E的横坐标为3

(1) 求点A的坐标

(2) x轴上有一点Pm,0),过点Px轴的垂线,与直线交于点C,与直线yx 交于点D.若CD≥4,则m的取值范围为___________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A是射线BE上一点,过ACABE交射线BF于点C,ADBF交射线BF于点D,给出下列结论:①∠1是∠B的余角;②图中互余的角共有3对;③∠1的补角只有∠ACF;④与∠ADB互补的角共有3个.则上述结论正确的个数有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,正方形OABC的边长为a.直线y=bx+cx轴于E,y轴于F,a,b,c分别满足:-(a-4)2≥0,c=++8.

(1)直线y=bx+c的解析式为________;正方形OABC的对角线的交点D的坐标为________;

(2)若正方形OABC沿x轴负方向以每秒移动1个单位长度的速度平移,设平移的时间为t秒,问是否存在t的值,使直线EF平分正方形OABC的面积?若存在,请求出t的值;若不存在,请说明理由;

(3)点P为正方形OABC的对角线AC上的动点(端点A、C除外),PMPO,交直线ABM,在备用图中画图分析,直接写出的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:|m|=2,a,b互为相反数,且都不为零,c,d互为倒数.则2a+2b+(﹣3cd)﹣m的值是_____

查看答案和解析>>

同步练习册答案