精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD,点E,F分别在AB,CD上,DGEF于点 H.

(1)求证:DG=EF;

(2)在图的基础上连接AH,如图,若 AH=AD,试确定DF CG的数量关系,并说明理由;

(3)在(2)的条件下,作FEK=45°,点 K BC边上,如图,若AE=KG=2,求EK的长.

【答案】(1)证明见解析;(2)DF=2GC;(3).

【解析】

(1)过点FFMAB于点M,由题意可证MF=BC=CD,BEF=DFE=DGC,即可证EFM≌△GDC,即可得EF=DG;

(2)过点AAMDG于点M,过点CCNDG于点N.由题意可证ADM≌△DCN,可得DM=CN=DH,由题意可证DFH∽△DGC,可得=2,即可得DF=2CG

(3)过点FFMAB,连接MK,FK,由题意可证RtEMFRtGCD,可求EM=GC,由AM=DF=2GC,可得GC=EM=2,则可证点E,点F,点K,点M四点共圆,可得∠EMF=EKF=90°,可证BEK≌△CKF,可得CK=BE=4,BM=2=BK,根据勾股定理可求EK的长.

(1)证明:过点FFMAB于点M,

∵四边形ABCD是正方形,

∴∠B=C=90°,AB=BC=CD,ABCD

FMAB,B=C=90°

∴四边形BCFM是矩形

MF=BC

MF=CD

EFDG,

C=90°

∴∠CDG+DGC=90°,CDG+DFE=90°

∴∠DGC=DFE

ABCD

∴∠BEF=EFD

∴∠BEF=DGC,且MF=CD,EMF=C=90°

∴△EFM≌△GDC(AAS)

EF=GD

(2)DF=2GC

过点AAMDG于点M,过点CCNDG于点N.

CNDG,ADC=90°

∴∠ADG+GDC=90°,GDC+NCD=90°

∴∠ADG=DCN

AD=AH,AMDG

MD=MH=DH,

AD=CD,AMD=CND=90°,ADG=NCD

∴△ADM≌△DCN(AAS)

MD=NC

DH=2NC

∵∠DGC=DFE,DHF=DCG=90°

∴△DFH∽△DGC

=2

DF=2GC

(3)如图:过点FFMAB,连接MK,FK,

FMAB,B=C=BAD=ADC=90°

∴四边形ADFM是矩形,四边形BCFM是矩形

DF=AM,AD=MF=BC=CD,

EF=DG,MF=CD

RtEMFRtGCD(HL)

GC=EM

DF=2GC

AM=2GC=2EM

AE=EM=2=CG

DF=4=CK

BK=BM

∴∠BMK=BKM=45°

∴∠FMK=45°

∵∠FMK=FEK=45°

∴点E,点F,点K,点M四点共圆

∴∠EMF=EKF=90°

∴∠FEK=EFK=45°

EK=FK,

∵∠BEK+EKB=90°,FKC+EKB=90°

∴∠FKC=BEK,且∠B=C=90°,EK=FK

∴△BEK≌△CKF(AAS)

CK=BE=4

BM=2=BK

EK=.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图ABCD为矩形的四个顶点AB=16cmAD=6cm动点PQ分别从点AC同时出发P3cm/s的速度向点B移动一直到达B为止Q2 cm/s的速度向D移动

(1)PQ两点从出发开始到几秒?四边形PBCQ的面积为33cm2

(2)PQ两点从出发开始到几秒时?点P和点Q的距离是10cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=ax2-4x+c的图象过点(-1, 0)和点(2,-9).

(1) 求该二次函数的解析式并写出其对称轴;

(2) 已知点P(2 , -2),连结OP , x轴上找一点M,使△OPM是等腰三角形,请直接写出点M的坐标(不写求解过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,AB是⊙O的直径,点P在AB的延长线上,弦CE交AB于点,连结OE,AC,且∠P=∠E,∠POE=2∠CAB.

(1)求证:CE⊥AB;

(2)求证:PC是⊙O的切线;

(3)若BD=2OD,且PB=9,求⊙O的半径长和tan∠P的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图P是矩形ABCD内一点连接PA、PB、PC、PD,已知AB=3,BC=4,PAB、PBC、PCD、PDA的面积分别为S1、S2、S3、S4以下判断PA+PB+PC+PD的最小值为10;PAB≌△PDC,PAD≌△PBC;S1=S2S3=S4PAB∽△PDA,PA=2.4;其中正确的是_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为3EF分别是ABBC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】m是何值时,关于x的方程(m2+2x2+m﹣1x﹣4=3x2

1)是一元二次方程;

2)是一元一次方程;

3)若x=﹣2是它的一个根,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学习掷硬币的概率时,老师说:掷一枚质地均匀的硬币,正面朝上的概率是,小明做了下列三个模拟实验来验证.

取一枚新硬币,在桌面上进行抛掷,计算正面朝上的次数与总次数的比值;

把一个质地均匀的圆形转盘平均分成偶数份,并依次标上奇数和偶数,转动转盘,计算指针落在奇数区域的次数与总次数的比值;

将一个圆形纸板放在水平的桌面上,纸板正中间放一个圆锥(如图),从圆锥的正上方往下撒米粒,计算其中一半纸板上的米粒数与纸板上总米粒数的比值. 上面的实验中,不科学的有(  )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知方程在实数范围内恒有解,并且恰有一个解大于1小于2,则的取值范围是_________

查看答案和解析>>

同步练习册答案