精英家教网 > 初中数学 > 题目详情
1.在下面各数中,$-\sqrt{5}$,-3π,$\frac{1}{2}$,3.1415,x,y,$\root{3}{64}$,0.1616616661…,$\sqrt{9}$,$\sqrt{8}$无理数有几个(  )
A.4B.3个C.2个D.1个

分析 根据无理数的三种形式求解.

解答 解:$\root{3}{64}$=4,$\sqrt{9}$=3,$\sqrt{8}$=2$\sqrt{2}$,
无理数有:$-\sqrt{5}$,-3π,0.1616616661…,$\sqrt{8}$,共4个.
故选A.

点评 本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.如图,△ABC中,∠C=90°.
(1)用尺规作图作AB边上的垂直平分线DE,交AC于点D,交AB于点E(保留作图痕迹,不要求写作法和证明);
(2)在(1)条件下,连接BD,当BC=3cm,AB=5cm时,求△BCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.正六边形的边长等于2,则这个正六边形的面积等于(  )
A.4$\sqrt{3}$B.6$\sqrt{3}$C.7$\sqrt{3}$D.8$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图1,有一组平行线l1∥l2∥l3∥l4,正方形ABCD的四个顶点A、B、C、D分别在l1、l2、l3、l4上,过点D作DE⊥l1于点E.已知相邻两条平行线之间的距离为2.
(1)求AE及正方形ABCD的边长;
(2)如图2,延长AD交l4于点G,求CG的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.在下列各数0.51525354…、0、0.2、3π、$\frac{22}{7}$、$\root{3}{9}$、$\frac{131}{11}$、$\sqrt{27}$中,无理数有0.51525354…、3π、$\root{3}{9}$、$\sqrt{27}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,在△ABC中,点O是AC边上一动点,过点O作BC的平行线交∠ACB的角平分线于点E,交∠ACB的外角平分线于点F
(1)求证:EO=FO;
(2)当点O运动到何处时,四边形CEAF是矩形?请证明你的结论.
(3)在第(2)问的结论下,若AE=3,EC=4,AB=12,BC=13,请直接写出凹四边形ABCE的面积为24.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.不等式组$\left\{\begin{array}{l}2x+5≤3(x+2)\\ \frac{x-1}{2}<\frac{1}{3}\end{array}\right.$的整数解的个数为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.分解因式
(1)4a2-16
(2)x2(x-2)+4(2-x)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.如图,若将四根木条钉成的矩形木框变形为平行四边形ABCD的形状,并使其面积为矩形面积的一半,则这个平行四边形的最小内角等于(  )
A.60°B.45°C.30°D.15°

查看答案和解析>>

同步练习册答案