精英家教网 > 初中数学 > 题目详情
13.已知一次函数y=kx+3经过点(2,1),则一次函数的图象经过的象限是(  )
A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限

分析 将点的坐标代入到一次函数解析式中,求出k值即可得出一次函数解析式,结合k、b的值即可断定一次函数经过的象限.

解答 解:∵一次函数y=kx+3经过点(2,1),
∴1=2k+3,解得:k=-1.
∴一次函数的解析式为y=-x+3.
∵k=-1<0,b=3>0,
∴一次函数的图象经过的象限是:第一、二、四象限.
故选B.

点评 本题考查了待定系数法求函数解析式以及一次函数的图象,解题的关键是求出一次函数解析式.本题属于基础题,难度不大,解决该题型题目时,根据点的坐标结合待定系数法求出函数解析式,再根据解析式中的k、b值即可断定函数图象所过的象限.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

3.如图,矩形ABCD中,F是DC上一点,BF⊥AC,垂足为E,$\frac{AD}{AB}=\frac{1}{2}$,△CEF的面积为S1,△AEB的面积为S2,则$\frac{{S}_{1}}{{S}_{2}}$的值等于(  )
A.$\frac{1}{16}$B.$\frac{1}{5}$C.$\frac{1}{4}$D.$\frac{1}{25}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,点A的坐标是(0,-2),在x轴上任取一点M,连接AM,作线段AM的垂直平分线l1,过点M作x轴的垂线l2,记l1,l2的交点为P.在x轴上多次改变点M的位置,得到相应的点P,会发现这些点P竟然在一条抛物线L上!记点P(x,y),连接AP.
(1)求出y关于x的函数解析式;
(2)若锐角∠APM的正切函数值为$\frac{4}{3}$.
①求点M的坐标;
②设点N在直线l2上,点Q在抛物线L上,当PN=1,且AQ,NQ之和最小时,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.已知1微米相当于1米的一百万分之一,则2.5微米用科学记数可表示为(  )
A.2.5×10-7B.2.5×10-6C.2.5×107D.2.5×106

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图,l1∥l2,∠3=30°,∠2=100°,则∠1=(  )
A.100°B.110°C.120°D.130°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.如图,△ABC中,∠ABC=90°,以AB为直径作半圆O,交斜边AC于点D,过点D作半圆O的切线DE,交BC于点E.
(1)求证:点E是BC的中点;
(2)过点C作AB的平行线l,l与BD的延长线交于点F,若$\frac{FD}{DB}$=$\frac{1}{3}$,求∠BAC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.如图,二次函数y=ax2+bx+c的图象经过(-2,-1),(1,1)两点,下列判断:
(1)abc<0;(2)2a+b+c<0;(3)若方程ax2+(b-$\frac{1}{2}$)x+c=0的较大根为m,则m>1;(4)当x<1时,y随x的增大而增大
其中正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如图,Rt△AOB中,OA⊥OB,⊙O与AB相切于点E,AO、BD的延长线交⊙O于C、D.若⊙O的半径为1,则四边形ABCD面积最小值为(  )
A.2+3$\sqrt{2}$B.$\frac{3+2\sqrt{2}}{2}$C.4+2$\sqrt{2}$D.3+3$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列运算正确的是(  )
A.a2•a3=a6B.($\frac{1}{2}$)-1=-2C.|-6|=6D.$\sqrt{16}$=±4

查看答案和解析>>

同步练习册答案