精英家教网 > 初中数学 > 题目详情
2.如图,过圆O外一点P作圆O的两条割线PA、PC分别交圆O于Q、A,B、C,且OQ∥PC,圆O的半径是3cm.
(1)求证:△ABP是等腰三角形;
(2)若∠PAB=30°,求BC的长;
(3)若PA=x,AC=y,试确定y与x的函数关系式,并求出y的取值范围.

分析 (1)根据平行线的性质以及等边对等角即可证明∠PAB=∠P,然后根据等角对等边即可证得;
(2)证明△ABC是直角三角形,利用三角函数即可求解;
(3)首先利用x表示出BC的长,在直角△ABC中利用勾股定理即可求得函数的解析式.

解答 (1)证明:∵OQ∥PC,
∴∠P=∠AQO,
又∵OA=OQ,
∴∠PAB=∠AQO,
∴∠PAB=∠P,
∴AB=BP,即△ABP是等腰三角形;
(2)解:∵AB是直径,
∴∠C=90°,
又∵∠ABC=∠PAB+∠P=60°,
∴BC=AB•cos∠ABC=6×$\frac{1}{2}$=3(cm);
(3)解:∵OQ∥PC,且O是AB的中点,
∴AQ=PQ=$\frac{1}{2}$AP=$\frac{1}{2}$x,
∵PQ•PA=PB•PC,即$\frac{1}{2}$x•x=6×(6+BC),
∴BC=$\frac{{x}^{2}-72}{12}$,
则在直角△ABC中,AC=$\sqrt{A{B}^{2}-B{C}^{2}}$=$\sqrt{36-(\frac{{x}^{2}-72}{12})^{2}}$,
即y=$\frac{\sqrt{144x-{x}^{2}}}{12}$.
∵-x2+144x=-(x-72)2+5184,
∴0<y≤6.

点评 本题考查了等腰三角形的判定与性质,以及三角函数,在直角△ABC中,以及BC和AB求AC的长,并把所得的根式进行化简是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC=4,O为AC的中点,OE⊥OD交AB于点E.若AE=3,则OD的长为$\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知:一元二次方程ax2+bx+c=0(a≠0)的一根是-1,且a,b满足等式b=$\sqrt{a-2}$+$\sqrt{2-a}$-1,求方程$\frac{1}{3}$y2+c=0的两根.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.已知x1,x2是方程2x2+3x-4=0的两个根,那么:x1+x2=-$\frac{3}{2}$;x1x2=-2;$\frac{1}{{x}_{1}}$+$\frac{1}{{x}_{2}}$=$\frac{3}{4}$;${x}_{1}^{2}$+${x}_{2}^{2}$=$\frac{25}{4}$;(x1+1)(x2+1)=-$\frac{5}{2}$;|x1-x2|=$\frac{\sqrt{41}}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列四个点中,有三个点在同一条直线上,不在这条直线上的点是(  )
A.(-3,-1)B.(11,6)C.(3,2)D.(4,3)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图所示,在平面直角坐标系中,⊙P的圆心在x轴上,其坐标为(40,0),⊙P的半径是20,在Rt△ABC中,∠ACB=90°,A(0,12)、C(0,-12)、B(-18,-12),将Rt△ABC沿x轴向右平移m(0<m<40)个单位长度得到△DEF,使得D、F两点落在圆上,期中A、B、C三点分别与D、E、F三点对应,DE、DF分别交x轴于点H、G
(1)求Rt△ABC移动的距离m;
(2)判断直线DE与⊙P的位置关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,△ABC中,BC=a.
(1)若AD1=$\frac{1}{3}$AB,AE1=$\frac{1}{3}$AC,则D1E1=$\frac{1}{3}$a;
(2)若D1D2=$\frac{1}{3}$D1B,E1E2=$\frac{1}{3}$E1C,则D2E2=$\frac{5}{9}a$;
(3)若D2D3=D2B,E2E3=$\frac{1}{3}$E2C,则D3E3=$\frac{19}{27}a$…
(4)若Dn-1Dn=$\frac{1}{3}$Dn-1B,En-1En=$\frac{1}{3}$En-1C,则DnEn=$\frac{{3}^{n}{-2}^{n}}{{3}^{n}}$a.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.下列各式是二次根式的是(  )
A.$\sqrt{-7}$B.$\root{3}{2}$C.$\sqrt{{x}^{2}+1}$D.$\root{3}{\frac{b}{a}}$

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.去平均每次下调的百分率.

查看答案和解析>>

同步练习册答案