精英家教网 > 初中数学 > 题目详情
(2012•广州)在平面中,下列命题为真命题的是(  )
分析:分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案,不是真命题的可以举出反例.
解答:解:A、四边相等的四边形不一定是正方形,例如菱形,故此选项错误;
B、对角线相等的四边形不是菱形,例如矩形,等腰梯形,故此选项错误;
C、四个角相等的四边形是矩形,故此选项正确;
D、对角线互相垂直的四边形不一定是平行四边形,如右图所示,故此选项错误.
故选:C.
点评:此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•广州)在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•广州)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•广州)如图,⊙P的圆心为P(-3,2),半径为3,直线MN过点M(5,0)且平行于y轴,点N在点M的上方.
(1)在图中作出⊙P关于y轴对称的⊙P′.根据作图直接写出⊙P′与直线MN的位置关系.
(2)若点N在(1)中的⊙P′上,求PN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•广州)如图,在平行四边形ABCD中,AB=5,BC=10,F为AD的中点,CE⊥AB于E,设∠ABC=α(60°≤α<90°).
(1)当α=60°时,求CE的长;
(2)当60°<α<90°时,
①是否存在正整数k,使得∠EFD=k∠AEF?若存在,求出k的值;若不存在,请说明理由.
②连接CF,当CE2-CF2取最大值时,求tan∠DCF的值.

查看答案和解析>>

同步练习册答案