精英家教网 > 初中数学 > 题目详情
如果抛物线y=-2x2+mx-3的顶点在x轴正半轴上,则m=
 
分析:由于抛物线的顶点在x轴正半轴上,那么根的判别式△=0(因为抛物线与x轴只有一个交点),且抛物线的对称轴x=-
b
2a
>0;联立上述两式可求得m的值.
解答:解:由题意可得
m2-24=0
m
4
>0

解得:m=2
6
点评:本题主要考查了二次函数解析式的确定、二次函数与一元二次方程的关系等知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,直线y=-2x+n(n>0)与x轴、y轴分别交于点A、B,S△OAB=16,抛物线y=ax2+bx(a≠0)经过点A,顶点M在直线y=-2x+n上.
(1)求n的值;
(2)求抛物线的解析式;
(3)如果抛物线的对称轴与x轴交于点N,那么在对称轴上找一点P,使得△OPN和△AMN相似,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

7、已知抛物线y=a(x-t-1)2+t2(a,t是常数,a≠0,t≠0)的顶点是A,抛物线y=x2-2x+1的顶点是B.
(1)判断点A是否在抛物线y=x2-2x+1上,为什么?
(2)如果抛物线y=a(x-t-1)2+t2经过点B,
①求a的值;
②这条抛物线与x轴的两个交点和它的顶点A能否构成直角三角形?若能,求出t的值;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如果抛物线C1的顶点在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,那么,精英家教网我们称抛物线C1与C2关联.
(1)已知抛物线①y=x2+2x-1,判断下列抛物线②y=-x2+2x+1;③y=x2+2x+1与已知抛物线①是否关联,并说明理由.
(2)抛物线C1:y=
1
8
(x+1)2-2,动点P的坐标为(t,2),将抛物线绕点P(t,2)旋转180°得到抛物线C2,若抛物线C1与C2关联,求抛物线C2的解析式.
(3)A为抛物线C1:y=
1
8
(x+1)2-2的顶点,B为与抛物线C1关联的抛物线顶点,是否存在以AB为斜边的等腰直角△ABC,使其直角顶点C在y轴上?若存在,求出C点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

若抛物线y=4x2-2x+c的顶点在x轴上,则c=
1
4
1
4
. 如果抛物线y=x2-6x+c-2的顶点到x轴的距离是3,那么c的值等于
14或8
14或8

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•攀枝花)如图,在直角坐标系中,已知点A、B在x轴上,且B(t,0)(-1<t<0),等腰△ABC的顶点B在以AC为直径的半圆D上,点E是直线OC与半圆D除点C以外的另一个交点,连接AE与BC相交于点F.又已知抛物线y=a(x2-2x)向左平移2个单位长度后点O恰与点A重合、点M恰与原点O重合,并把平移后所得抛物线记为H.
(1)求证:BF=BO;
(2)如果抛物线H还经过点F,试用含t的式子表示a;
(3)若AE经过△AOC的内心I,试求出此时经过三点A、F、O的抛物线的解析式;
(4)在(3)的条件下,问在抛物线上是否存在点P,使该点关于直线AF的对称点在x轴上?若存在,请求出所有这样的点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案