精英家教网 > 初中数学 > 题目详情
(2013•包头)如图,一根长6
3
米的木棒(AB),斜靠在与地面(OM)垂直的墙(ON)上,与地面的倾斜角(∠ABO)为60°.当木棒A端沿墙下滑至点A′时,B端沿地面向右滑行至点B′.
(1)求OB的长;
(2)当AA′=1米时,求BB′的长.
分析:(1)由已知数据解直角三角形AOB即可;
(2)首先求出OA的长和OA′的长,再根据勾股定理求出OB′的长即可.
解答:解:(1)根据题意可知:AB=6
3
,∠ABO=60°,∠AOB=90°,
在Rt△AOB中,∵cos∠ABO=
OB
AB

∴OB=ABcos∠ABO=6
3
cos60°=3
3
米,
∴OB的长为3
3
米;

(2)根据题意可知A′B′=AB=6
3
米,
在Rt△AOB中,∵sin∠ABO=
OA
AB

∴OA=ABsin∠ABO=6
3
sin60°=9米,
∵OA′=OA-AA′,AA′=1米,
∴OA′=8米,
在Rt△A′OB′中,OB′=2
11
米,
∴BB′=OB′-OB=(2
11
-3
3
)米.
点评:本题考查了勾股定理的应用和特殊角的锐角三角函数,是中考常见题型.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•包头)如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.
(1)如图①,当
CE
EB
=
1
3
时,求
S△CEF
S△CDF
的值;
(2)如图②当DE平分∠CDB时,求证:AF=
2
OA;
(3)如图③,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=
1
2
BG.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•包头)如图,四边形ABCD和四边形AEFC是两个矩形,点B在EF边上,若矩形ABCD和矩形AEFC的面积分别是S1、S2的大小关系是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•包头)如图,点A、B、C、D在⊙O上,OB⊥AC,若∠BOC=56°,则∠ADB=
28
28
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•包头)如图,已知在△ABP中,C是BP边上一点,∠PAC=∠PBA,⊙O是△ABC的外接圆,AD是⊙O的直径,且交BP于点E.
(1)求证:PA是⊙O的切线;
(2)过点C作CF⊥AD,垂足为点F,延长CF交AB于点G,若AG•AB=12,求AC的长;
(3)在满足(2)的条件下,若AF:FD=1:2,GF=1,求⊙O的半径及sin∠ACE的值.

查看答案和解析>>

同步练习册答案