精英家教网 > 初中数学 > 题目详情
精英家教网已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点,请你在图中任意画一条抛物线,问所画的抛物线最多能经过81个格点中的多少个(  )
A、6B、7C、8D、9
分析:建立如图坐标系,水平为x轴,竖直为y轴,设抛物线解析式为:y=ax2+bx+c,要使得点最多,取整数点(0,1),(1,1),(2,2)代入抛物线的解析式,求出a、b、c的值,再把各整数格点代入求解即可.
解答:精英家教网解:由题意,建立如图坐标系,水平为x轴,竖直为y轴,
设抛物线解析式为:y=ax2+bx+c,
要使得格点最多,抛物线如图所示:
取整数点D(0,1),E(1,1),F(2,2)代入抛物线的解析式得,
1=a×02+0×b+c,
1=a×12+1×b+c,
2=a×22+2b+c,
解得a=
1
2
,b=
1
2
,c=1,
故y=
1
2
x2-
1
2
x+1,
∴A(-3,7);B(-2,4);C(-1,2);D(0,1);E(1,1)
F(3,4);G(3,4);H(4,7)共8个.
建立坐标系的方法:设方格左下角为(0,0),沿着方格的边沿建立直角坐标系.
取抛物线为y=
1
2
(x-3)(x-4),
则它能经过8个格点:(0,6),(1,3),(2,1),(3,0),(4,0),(5,1),(6,3),(7,6).
对于任意的二次函数,如果我们依次考察x=0,1,2,…,8时的值,并依次用后一个值减去前一个值,总得到一个等差数列.要使经过的格点尽量多,则这个等差数列的公差要尽量小,且为整数. 因此,令公差为1,这相当于取二次项系数为
1
2

验证:如果抛物线经过9个格点,那么在抛物线的顶点及一侧至少经过5个格点,由于这5个格点的横坐标都差1,考虑到抛物线的递增或递减趋势,这5点的纵坐标的极差不小于1+2+3+4=10,显然这5个格点不全在8×8网格之内.
故选C.
点评:此题是一道新颖题,定义了一个格点的概念,思路比较开放,要建立合适的坐标系来找最多格点,考查了抛物线的基本性质.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.若△ABC与△A1B1C1是位似图形,且顶点都在格点上,则位似中心的坐标是
(9,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点,△ABC的顶点在格点上,称为格点三角形,试判断△ABC的形状.请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点,△ABC的顶点在格点上,称为格点三角形,请按要求完成下列各题:
(1)AB2=
45
45
,BC2=
20
20
,AC2=
65
65

(2)试判断△ABC的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年浙江省湖州市中考数学试卷(解析版) 题型:选择题

(2009•湖州)已知图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点,请你在图中任意画一条抛物线,问所画的抛物线最多能经过81个格点中的多少个( )
A.6
B.7
C.8
D.9

查看答案和解析>>

同步练习册答案