A. | $\frac{\sqrt{5}}{3}$ | B. | $\frac{1}{3}$ | C. | $\sqrt{5}-\frac{3}{2}$ | D. | 3-$\sqrt{5}$ |
分析 由矩形的性质得出CD=AB=3,AB∥CD,BC=AD=2,∠C=90°,由平行线的性质得出∠BAM=∠AMD,再由角平分线证出∠BAM=∠AMB,得出MB=AB=3,由勾股定理求出CM,即可得出DM的长.
解答 解:∵四边形ABCD是矩形,
∴CD=AB=3,AB∥CD,BC=AD=2,∠C=90°,
∴∠BAM=∠AMD,
∵AM平分∠DMB,
∴∠AMD=∠AMB,
∴∠BAM=∠AMB,
∴BM=AB=3,
∴CM=$\sqrt{M{B}^{2}-B{C}^{2}}$=$\sqrt{{3}^{2}-{2}^{2}}$=$\sqrt{5}$,
∴DM=CD-CM=3-$\sqrt{5}$;
故选:D.
点评 本题考查了矩形的性质、等腰三角形的判定、平行线的性质、勾股定理;熟练掌握矩形的性质,证明MB=AB是解决问题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
载客量/人 | 组中值 | 频数(班次) |
1≤x<21 | 11 | 2 |
21≤x<41 | a | 8 |
41≤x<61 | b | 20 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\sqrt{9}$ | B. | $\sqrt{\frac{1}{3}}$ | C. | $\sqrt{20}$ | D. | $\sqrt{7}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com