精英家教网 > 初中数学 > 题目详情

已知:如图,△ABC中,AD是∠BAC的平分线,AD的垂直平分线交AD于E,交BC的延长线于F.求证:
(1)FD2=FB•FC;
(2)AB2:AC2=BF:CF.

证明:(1)连结AF,
∵AD的垂直平分线交AD于E,
∴AF=DF,
∴∠1+∠2=∠4,
∵∠B+∠3=∠4,
∠2=∠3,
∴∠B=∠1,
∵∠AFB=∠CFA,
∴△ACF∽△BAF,
=
∴AF2=FB•FC,
即FD2=FB•FC.

(2)∵△ACF∽△BAF,
==
=
分析:(1)利用垂直平分线的性质得出AF=DF,进而利用外角的性质得出∠B=∠1,即可得出△ACF∽△BAF,即可得出答案;
(2)利用(1)中所求由相似三角形的性质得出即可.
点评:此题主要考查了相似三角形的判定与性质,根据已知得出∠B=∠1是解题关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、已知,如图,△ABC中,∠BAC=90°,AD⊥BC于点D,BE平分∠ABC,交AD于点M,AN平分∠DAC,交BC于点N.
求证:四边形AMNE是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,∠ABC、∠ACB 的平分线相交于点F,过F作DE∥BC于D,交AC 于E,且AB=6,AC=5,求三角形ADE的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC是等边三角形,点D在AB上,点E在AC的延长线上,且BD=CE,DE交BC于F,求证:BF=CF+CE.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AB=AC=10,BC=16,点D在BC上,DA⊥CA于A.
求:BD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△ABC中,AD⊥BC,BD=DE,点E在AC的垂直平分线上.
(1)请问:AB、BD、DC有何数量关系?并说明理由.
(2)如果∠B=60°,请问BD和DC有何数量关系?并说明理由.

查看答案和解析>>

同步练习册答案