精英家教网 > 初中数学 > 题目详情

已知关于的方程

1.若方程有两个不相等的实数根,求的取值范围;

2. 若正整数满足,设二次函数的图象与 轴交于两点,将此图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象回答:当直线与此图象恰好有三个公共点时,求出的值(只需要求出两个满足题意的k值即可).

 

 

1.

          由题意得,>0且  .

∴  符合题意的m的取值范围是 的  一切实数.

2.∵ 正整数满足

           ∴ m可取的值为1和2 .

           又∵ 二次函数

           ∴ =2.

           ∴ 二次函数为

           ∴  A点、B点的坐标分别为(-1,0)、(3,0).

依题意翻折后的图象如图所示.

           

         由图象可知符合题意的直线经过点A、B.

  可求出此时k的值分别为3或-1.

         注:若学生利用直线与抛物线相切求出k=2也是符合题意的答案.

解析:

1.利用>0和二次项系数不为0计算出m的取值范围;

2.利用已知求出m的值,得出二次函数的解析式,从而得出A、B两点的坐标,然后翻折得出k的值。

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于的方程x2+kx-3=0有一根为-3,则另一根为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于的方程
x+a
x-3
=-1
有正根,则实数a的取值范围是(  )
A、a<0且a≠-3
B、a>0
C、a<-3
D、a<3且a≠-3

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于的方程x2+ax+b=0(b≠0)与x2+cx+d=0都有实数根,若这两个方程有且只有一个公共根,且ab=cd,则称它们互为“同根轮换方程”.如x2-x-6=0与x2-2x-3=0互为“同根轮换方程”.
(1)若关于x的方程x2+4x+m=0与x2-6x+n=0互为“同根轮换方程”,求m的值;
(2)若p是关于x的方程x2+ax+b=0(b≠0)的实数根,q是关于x的方程x2+2ax+
1
2
b=0
的实数根,当p、q分别取何值时,方程x2+ax+b=0(b≠0)与x2+2ax+
1
2
b=0
互为“同根轮换方程”,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2011届河南省周口市初三下学期第二十八章二次函数图像与性质检测题 题型:解答题

已知关于的方程.

(1)求证:方程总有两个实数根;
(2)若方程有一个根大于4且小于8,求m的取值范围;
(3)设抛物线轴交于点M,若抛物线与x轴的一个交点关于直线的对称点恰好是点M,求的值.

查看答案和解析>>

科目:初中数学 来源:2012年人教版初中数学九年级上22.1一元二次方程练习卷(解析版) 题型:解答题

已知关于的方程

⑴  若方程有两个相等的实数根,求的值,并求出此时方程的根(6分)

⑵  是否存在正数,使方程的两个实数根的平方和等于224 ?若存在,求出满足条件的的值; 若不存在,请说明理由。(6分)

 

查看答案和解析>>

同步练习册答案