分析 (1)首先由等腰直角三角形的性质求得∠BAD、∠BCD的度数,然后由旋转的性质可求得∠BCE的度数,故此可求得∠DCE的度数;
(2)由(1)可知△DCE是直角三角形,先由勾股定理求得AC的长,然后依据比例关系可得到CE和DC的长,最后依据勾股定理求解即可.
解答 解:(1)∵△ABC为等腰直角三角形,
∴∠BAD=∠BCD=45°.
由旋转的性质可知∠BAD=∠BCE=45°.
∴∠DCE=∠BCE+∠BCA=45°+45°=90°.
(2)∵BA=BC,∠ABC=90°,
∴AC=$\sqrt{A{B}^{2}+B{C}^{2}}$=4$\sqrt{2}$.
∵CD=3AD,
∴AD=$\sqrt{2}$,DC=3$\sqrt{2}$.
由旋转的性质可知:AD=EC=$\sqrt{2}$.
∴DE=$\sqrt{C{E}^{2}+D{C}^{2}}$=2$\sqrt{5}$.
点评 本题主要考查的是旋转的性质、勾股定理的应用、等腰直角三角形的性质,求得∠DCE=90°是解题的关键.
科目:初中数学 来源: 题型:选择题
A. | 0.5 | B. | 1 | C. | 1或2 | D. | 0.5或2.5 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 7.5折 | B. | 8折 | C. | 6折 | D. | 3.3折 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 57 | B. | 73 | C. | 91 | D. | 111 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | y1<y2<y3 | B. | y2<y1<y3 | C. | y3<y1<y2 | D. | y3<y2<y1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com