精英家教网 > 初中数学 > 题目详情
(2013•日照)如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b).则半圆还露在外面的部分(阴影部分)的面积为
(3π-
9
3
4
)cm2
(3π-
9
3
4
)cm2

分析:如图,露在外面部分的面积可用扇形ODK与△ODK的面积差来求得,在Rt△A'DC中,可根据AD即圆的直径和CD即圆的半径长,求出∠DA'C的度数,进而得出∠ODH和∠DOK的度数,即可求得△ODK和扇形ODK的面积,由此可求得阴影部分的面积.
解答:解:作OH⊥DK于H,连接OK,
∵以AD为直径的半园,正好与对边BC相切,

∴AD=2CD,
∴A'D=2CD,
∵∠C=90°,
∴∠DA'C=30°,
∴∠ODH=30°,
∴∠DOH=60°,
∴∠DOK=120°,
∴扇形ODK的面积为
120π×32
360
=3πcm2
∵∠ODH=∠OKH=30°,OD=3cm,
∴OH=
3
2
cm,DH=
3
3
2
cm;
∴DK=3
3
cm,
∴△ODK的面积为
9
3
4
cm2
∴半圆还露在外面的部分(阴影部分)的面积是:(3π-
9
3
4
)cm2
故答案为:(3π-
9
3
4
)cm2
点评:此题考查了折叠问题,解题时要注意找到对应的等量关系;还考查了圆的切线的性质,垂直于过切点的半径;还考查了直角三角形的性质,直角三角形中,如果有一条直角边是斜边的一半,那么这条直角边所对的角是30度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•日照)如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•日照)如图,H7N9病毒直径为30纳米(1纳米=10-9米),用科学记数法表示这个病毒直径的大小,正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•日照)如图是某学校全体教职工年龄的频数分布直方图(统计中采用“上限不在内”的原则,如年龄为36岁统计在36≤x<38小组,而不在34≤x<36小组),根据图形提供的信息,下列说法中错误的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•日照)如图,已知抛物线y1=-x2+4x和直线y2=2x.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:
①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.
其中正确的有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•日照)如右图,直线AB交双曲线y=
kx
于A、B,交x轴于点C,B为线段AC的中点,过点B作BM⊥x轴于M,连结OA.若OM=2MC,S△OAC=12.则k的值为
8
8

查看答案和解析>>

同步练习册答案