【题目】某商业集团新建一小车停车场,经测算,此停车场每天需固定支出的费用(设施维修费、车辆管理人员工资等)为800元.为制定合理的收费标准,该集团对一段时间每天小车停放辆次与每辆次小车的收费情况进行了调查,发现每辆次小车的停车费不超过5元时,每天来此处停放的小车为1440辆;当每辆次小车的停车费超过5元时,每增加1元,到此处停放的小车就减少120辆次.为便于结算,规定每辆次小车的停车费x(元)只取整数,用y(元)表示此停车场的日净收入,且要求日净收入不低于2512元.(日净收入=每天共收取的停车费一每天的固定支出)
A型利润 | B型利润 | |
甲店 | 200 | 170 |
乙店 | 160 | 150 |
(1)当x≤5时,写出y与x之间的关系式,并说明每辆小车的停车费最少不低于多少元;
(2)当x>5时,写出y与x之间的函数关系式(不必写出x的取值范围);
(3)该集团要求此停车场既要吸引客户,使每天小车停放的辆次较多,又要有较大的日净收入.按此要求,每辆次小车的停车费应定为多少元?此时日净收入是多少?
【答案】
(1)解:由题意得:y=1440x﹣800
∵1440x﹣800≥2512,
∴x≥2.3
∵x取整数,
∴x最小取3,即每辆次小车的停车费最少不低于3元.
(2)解:由题意得:
y=[1440﹣120(x﹣5)]x﹣800
即y=﹣120x2+2040x﹣800;
(3)解:当x≤5时,停车1440辆次,最大日净收入y=1440×5﹣800=6400(元)
当x>5时,
y=﹣120x2+2040x﹣800
=﹣120(x2﹣17x)﹣800
=﹣120(x﹣ )2+7870
∴当x= 时,y有最大值.但x只能取整数,
∴x取8或9.
显然,x取8时,小车停放辆次较多,此时最大日净收入为y=﹣120× +7870=7840(元)
由上得,每辆次小车的停车费应定为8元,此时的日净收入为7840元.
【解析】(1)根据“总利润=每两次停车费用×辆次﹣总成本”列出函数解析式,再由日净收入不低于2512元列不等式求解可得;(2)根据“总利润=每两次停车费用×辆次﹣总成本”可得函数解析式;(3)根据(1)、(2)中函数解析式利用一次函数和二次函数性质求解可得.
科目:初中数学 来源: 题型:
【题目】为了维护海洋权益,新组建的国家海洋局加大了在南海的巡逻力度,一天,我两艘海监船刚好在我某岛东西海岸线上的A、B两处巡逻,同时发现一艘不明国籍的船只停在C处海域.如图所示,AB=60( )海里,在B处测得C在北偏东45°的方向上,A处测得C在北偏西30°的方向上,在海岸线AB上有一灯塔D,测得AD=120( )海里.
(1)分别求出A与C及B与C的距离AC、BC(结果保留根号)
(2)已知在灯塔D周围100海里范围内有暗礁群,我在A处海监船沿AC前往C处盘查,图中有无触礁的危险?
(参考数据: =1.41, =1.73, =2.45)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD、AEFG均为正方形,其中E在BC上,且B、E两点不重合,并连接BG.根据图中标示的角判断下列∠1、∠2、∠3、∠4的大小关系何者正确?( )
A.∠1<∠2
B.∠1>∠2
C.∠3<∠4
D.∠3>∠4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有6个质地和大小均相同的球,每个球只标有一个数字,将标有3,4,5的三个球放入甲箱,标有5,6,7的三个球放入乙箱中.
(1)小宇从甲箱中随机摸出一个球,则“摸出标有数字是5的球”的概率是;
(2)小宇从甲箱中,小静从乙箱中各自随机摸出一个球,若小宇所摸球上的数字比小静所摸球上的数字小于1,则称小宇“屡胜一筹”,请你用列表法(或画树状图),求小宇“屡胜一筹”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校初三(1)班50名学生参加1分钟跳绳体育考试.1分钟跳绳次数与频数经统计后绘制出下面的频数分布表(60~70表示为大于等于60并且小于70)和扇形统计图.
等级 | 分数段 | 1分钟跳绳次数段 | 频数(人数) |
A | 120 | 254~300 | 0 |
110~120 | 224~254 | 3 | |
B | 100~110 | 194~224 | 9 |
90~100 | 164~194 | m | |
C | 80~90 | 148~164 | 12 |
70~80 | 132~148 | n | |
D | 60~70 | 116~132 | 2 |
0~60 | 0~116 | 0 |
(1)求m、n的值;
(2)求该班1分钟跳绳成绩在80分以上(含80分)的人数占全班人数的百分比;
(3)根据频数分布表估计该班学生1分钟跳绳的平均分大约是多少?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,C,E是直线l两侧的点,以C为圆心,CE长为半径画弧交l于A,B两点,又分别以A,B为圆心,大于 AB的长为半径画弧,两弧交于点D,连接CA,CB,CD,下列结论不一定正确的是( )
A.CD⊥l
B.点A,B关于直线CD对称
C.点C,D关于直线l对称
D.CD平分∠ACB
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题探究:
①新知学习
若把将一个平面图形分为面积相等的两个部分的直线叫做该平面图形的“面线”,其“面线”被该平面图形截得的线段叫做该平面图形的“面径”(例如圆的直径就是圆的“面径”).
②解决问题
已知等边三角形ABC的边长为2.
(1)如图一,若AD⊥BC,垂足为D,试说明AD是△ABC的一条面径,并求AD的长;
(2)如图二,若ME∥BC,且ME是△ABC的一条面径,求面径ME的长;
(3)如图三,已知D为BC的中点,连接AD,M为AB上的一点(0<AM<1),E是DC上的一点,连接ME,ME与AD交于点O,且S△MOA=S△DOE .
①求证:ME是△ABC的面径;
②连接AE,求证:MD∥AE;
(4)请你猜测等边三角形ABC的面径长l的取值范围(直接写出结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:二次函数y=ax2+bx+6(a≠0)的图象与x轴交于A,B两点(点A在点B的左侧,与y轴交于点C,点A、点B的横坐标是一元二次方程x2﹣4x﹣12=0的两个根.
(1)请直接写出点A、点B的坐标.
(2)请求出该二次函数表达式及对称轴和顶点坐标.
(3)如图,在二次函数对称轴上是否存在点P,使△APC的周长最小?若存在,请求出点P的坐标;若不存在,那个说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com