精英家教网 > 初中数学 > 题目详情
问题背景:如图1,四边形ABCD和CEFG都是正方形,B,C,E在同一条直线上,连接BG,DE.
问题探究:
(1)①如图1所示,当G在CD边上时,猜想线段BG、DE的数量关系及所在直线的位置关系.(不要求证明)
②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2,如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,请选择图2或图3证明你的判断.
类比研究:
(2)若将原题中的“正方形”改为“矩形”(如图所示),且
AB
BC
=
CE
CG
=k(其中k>0),请直接写出线段BG、DE的数量关系及位置关系.请选择图5或图6证明你的判断.
拓展应用:
(3)在(1)中图2中,连接DG、BE,若AB=3,EF=2,求BE2+DG2的值.
精英家教网

精英家教网
解;(1)①BG=DE,BG⊥DE;
②仍然成立,选择图2证明如下:
证明:∵四边形ABCD、CEFG都是正方形;
∴BC=CD,CG=CE,∠BCD=∠ECG,
∴∠BCG=∠DCE,
∴△BCG≌△DCE(SAS),
∴BG=DE,∠CBG=∠CDE,
又∵∠BHC=∠DHO,∠CBG+∠BHC=90°,
∴∠CDE+∠DHO=90°,
∴∠DOH=90°,
∴BG⊥DE;

(2)BG⊥DE,
DE
BG
=k,
如图5,
精英家教网

证明:
∵四边形ABCD,CEFG都是矩形,且
AB
BC
=
EC
CG
=k,
DC
BC
=
EC
CG
=k,∠BCD=∠ECG=90°,
∴∠BCG=∠DCE,
∴△BCG△DCE,
∴∠CBG=∠CDE,
DE
BG
=k,
又∵∠BHC=∠DHO,∠CBG+∠BHC=90°,
∴∠CDE+∠DHO=90°,
∴∠DOH=90°,
∴BG⊥DE;

(3)∵BG⊥DE,
∴BE2+DG2=OB2+OE2+OG2+OD2=BD2+GE2
又∵AB=3,CE=2,
∴BD=3
2
,GE=2
2

∴BD2+GE2=(3
2
2+(2
2
2=26,
∴BE2+DG2=26.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

问题背景  某课外学习小组在一次学习研讨中,得到如下两个命题:
①如图1,O是正三角形ABC的中心,∠MON分别与AB、BC交于点P,Q,若∠MON=120°,则四边形OPBQ的面积等于三角形ABC面积的三分之一.
②如图2,O是正方形ABCD的中心,∠MON分别与AB、BC交于点P,Q,若∠MON=90°,则四边形OPBQ的面积等于正方形ABCD面积的四分之一.
然后运用类比的思想提出了如下的命题:
③如图3,O是正五边形ABCDE的中心,∠MON分别与AB、BC交于点P,Q,若∠MON=72°,则四边形OPBQ的面积等于五边形ABCDE面积的五分之一.
任务要求
(1)请你从①、②、③三个命题中选择一个进行证明;
(2)请你继续完成下面的探索:
如图4,在正n(n≥3)边形ABCDEF…中,O是中心,∠MON分别与AB、BC交于点P,Q,若∠MON 等于多少度时,则四边形OPBQ的面积等于正n边形ABCDE…面积的n分之一?(不要求证明)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

问题背景  在△ABC中,∠B=2∠C,点D为线段BC上一动点,当AD满足某种条件时,探讨在线段AB、BD、CD、AC四条线段中,某两条或某三条线段之间存在的数量关系.
例如:在图1中,当AB=AD时,可证得AB=DC,现在继续探索:
任务要求:
(1)当AD⊥BC时,如图2,求证:AB+BD=DC;
(2)当AD是∠BAC的角平分线时,判断AB、BD、AC的数量关系,并证明你的结精英家教网论.

查看答案和解析>>

科目:初中数学 来源:湖北省咸宁市2010年中考数学试卷 题型:059

问题背景

(1)如图,△ABC中,DEBC分别交ABACDE两点,过点EEFABBC于点F.请按图示数据填空:

四边形DBFE的面积S=________,

EFC的面积S1=________,

ADE的面积S2=________.

探究发现

(2)在(1)中,若BF=a,FC=b,DEBC间的距离为h.请证明S2=4S1S2

拓展迁移

(3)如图,□DEFG的四个顶点在△ABC的三边上,若△ADG、△DBE、△GFC的面积分别为2、5、3,试利用(2)中的结论求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:2012届江苏省江阴市石庄中学九年级中考模拟考试数学试卷(带解析) 题型:解答题

问题背景:
如图1,矩形铁片ABCD的长为2a,宽为a; 为了要让铁片能穿过直径为的圆孔,需对铁片进行处理(规定铁片与圆孔有接触时铁片不能穿过圆孔);

探究发现:
【小题1】如图2,M、N、P、Q分别是AD、AB、BC、CD的中点,若将矩形铁片的四个角去掉,只余下四边形MNPQ,则此时铁片的形状是 _______,给出证明,并通过计算说明此时铁片都能穿过圆孔;

拓展迁移:
【小题2】如图3,过矩形铁片ABCD的中心作一条直线分别交边BC、AD于点E、F(不与端点重合),沿着这条直线将矩形 铁片切割成两个全等的直角梯形铁片;
 
①当BE=DF=时,判断直角梯形铁片EBAF能否穿过圆孔,并说明理由;
②为了能使直角梯形铁片EBAF顺利穿过圆孔,请直接写出线段BE的长度的取值范围 .

查看答案和解析>>

科目:初中数学 来源:2013届江苏省赣榆县罗阳中学九年级4月质量检测(一)数学试卷(带解析) 题型:解答题

问题背景
(1)如图1,△ABC中,DEBC分别交ABACDE两点,过点EEFABBC于点F.请按图示数据填空:四边形DBFE的面积     ,△EFC的面积     ,△ADE的面积     

探究发现
(2)在(1)中,若DEBC间的距离为.请证明
拓展迁移
(3)如图2,□DEFG的四个顶点在△ABC的三边上,若△ADG、△DBE、△GFC的面积分别为2、5、3,试利用(2)中的结论求△ABC的面积.

查看答案和解析>>

同步练习册答案