精英家教网 > 初中数学 > 题目详情
26、已知:在四边形ABCD中,AC=BD,AC与BD交于点O,∠DOC=60度.
(1)当四边形ABCD是平行四边形时(如图1),证明AB+CD=AC;
(2)当四边形ABCD是梯形时(如图2),AB∥CD,线段AB、CD和线段AC之间的数量关系是
AB+CD=AC

(3)如图3,四边形ABCD中,AB与CD不平行,结论AB+CD=AC是否仍然成立?如果成立,请给予证明;如果不成立,请说明理由.
分析:(1)当四边形ABCD为平行四边形时,由于AC=BD,所以平行四边形ABCD实际为矩形,若∠DOC=60°时,三角形ABO和三角形DOC均为等边三角形,所以会有AB+CD=AC;
(2)当四边形ABCD为等腰梯形时,三角形ABO和三角形CDO也是等边三角形,所以会有AB+CD=AC;
(3)不成立,过B作BM∥AC,过C作CM∥AB,连接DM.构建平行四边形后AB=CM,BM=AC=BD,由于∠DOC=60°,可知∠DBM=60°,即三角形BDM为等边三角形,所以BD=BM=DM=AC,在三角形DCM中,CM+CD>AC,即AB+CD>AC.
解答:解:(1)在?ABCD中,
∵AC=BD
∴?ABCD为矩形
又∵∠DOC=60°,
∴∠AOB=60°,
又OA=OB=OC=OD,
∴AB=CD=OA=OC.
即AB+CD=AC;

(2)AB+CD=AC;
∵∠DOC=60°,
∴∠AOB=60°,
∵AC=BD,
∴△AOB,△DOC都是正三角形,
∴OA=OB=OC=OD,
∴AB=OA,CD=OC.
即AB+CD=AC;

(3)不成立,应为AB+CD>AC.
如图所示过B作BM∥AC,过C作CM∥AB,
则四边形ABMC为平行四边形,
∴CM=AB,BM=AC=BD,BM∥AC,
又∵∠DOC=60°,
∴∠DBM=∠DOC=60°
即三角形DBM为等边三角形,
∴BM=AC=DM
在△CDM中,CM+CD>DM,
即AB+CD>AC.
点评:此题考查了平行四边形、矩形、等腰梯形的基本性质,比较全面,难易适中.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、(1)如图1,已知直线m∥n,A,B为直线n上的两点,C,D为直线m上的两点.
①请你判断△ABC与△ABD的面积具有怎样的关系?
②若点D在直线m上可以任意移动,△ABD的面积是否发生变化?并说明你的理由.
(2)如图2,已知:在四边形ABCD中,连接AC,过点D作EF∥AC,P为EF上任意一点(与点D不重合).请你说明四边形ABCD的面积与四边形ABCP的面积相等.
(3)如图3是一块五边形花坛的示意图.为了使其更规整一些,园林管理人员准备将其修整为四边形,根据花坛周边的情况,计划在BC的延长线上取一点F,沿EF取直,构成新的四边形ABFE,并使得四边形ABFE的面积与五边形ABCDE的面积相等.请你在图3中画出符合要求的四边形ABFE,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:在Rt△ABC中,∠ABC=90°,以直角边AB为直径作⊙O,⊙O与斜边AC交于点D,E为BC边的中点,连接DE.
(1)求证:DE是⊙O的切线;
(2)连接OE,若四边形AOED是平行四边形,求∠CAB的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

22、已知,在等腰△ABC中,AB=AC,分别延长BA,CA到D,E点,使DA=AB,EA=CA,则四边形BCDE是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:在Rt△ABC中,∠BCA=90°,AC=3,BC=4,CD是斜边AB边上的高,点E、F分别是AC、BC边上的动点,连接DE、DF、EF,且∠EDF=90°.

(1)当四边形CEDF是矩形时(如图1),试求EF的长并直接判断△DEF与△DAC是否相似.
(2)在点E、F运动过程中(如图2),△DEF与△DAC相似吗?请说明理由;
(3)设直线DF与直线AC相交于点G,△EFG能否为等腰三角形?若能,请直接写出线段AE的长;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知,在四边形ABCD中,AD∥BC,BD平分∠ABC,∠A=120°,CD=4cm,∠ABC=∠DCB,求BC的长.

查看答案和解析>>

同步练习册答案