精英家教网 > 初中数学 > 题目详情
16.小东家与学校之间是一条笔直的公路,早饭后,小东步行前往学校,途中发现忘带画板,停下给妈妈打电话,妈妈接到电话后,带上画板马上赶往学校,同时小东沿原路返回,两人相遇后,小东立即赶往学校,妈妈沿原路返回16min到家,再过5min小东到达学校,小东始终以100m/min的速度步行,小东和妈妈的距离y(单位:m)与小东打完电话后的步行时间t(单位:min)之间的函数关系如图所示,下列四种说法:
①打电话时,小东和妈妈的距离为1400米;
②小东和妈妈相遇后,妈妈回家速度为50m/min;
③小东打完电话后,经过27min到达学校;
④小东家离学校的距离为2900m.
其中正确的个数是(  )
A.1个B.2个C.3个D.4个

分析 ①由当t=0时y=1400,可得出打电话时,小东和妈妈的距离为1400米,结论①正确;②利用速度=路程÷时间结合小东的速度,可求出小东和妈妈相遇后,妈妈回家的速度为50m/min,结论②正确;③由t的最大值为27,可得出小东打完电话后,经过27min到达学校,结论③正确;④根据路程=2400+小东步行的速度×(27-22),即可得出小东家离学校的距离为2900m,结论④正确.综上即可得出结论.

解答 解:①当t=0时,y=1400,
∴打电话时,小东和妈妈的距离为1400米,结论①正确;
②2400÷(22-6)-100=50(m/min),
∴小东和妈妈相遇后,妈妈回家的速度为50m/min,结论②正确;
③∵t的最大值为27,
∴小东打完电话后,经过27min到达学校,结论③正确;
④2400+(27-22)×100=2900(m),
∴小东家离学校的距离为2900m,结论④正确.
综上所述,正确的结论有:①②③④.
故选D.

点评 本题考查了一次函数的应用,观察图形,逐一分析四条结论的正误是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.如图,一次函数y=kx+5(k为常数,且k≠0)的图象与反比例函数y=-$\frac{8}{x}$的图象有一交点为A(-2,b)点.
(1)求一次函数的表达式;
(2)若将直线AB向下平移m(m>0)个单位长度后与反比例函数的图象有且只有一个公共点,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,已知扇形OAB的圆心角为60°,扇形的面积为6π,则该扇形的弧长为2π.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.在一条不完整的数轴上从左到右有点A,B,C,其中AB=2,BC=1,如图所示,设点A,B,C所对应数的和是p.
(1)若以B为原点,写出点A,C所对应的数,并计算p的值;若以C为原点,p又是多少?
(2)若原点O在图中数轴上点C的右边,且CO=28,求p.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在x轴,y轴的正半轴上,函数y=2x的图象与CB交于点D,函数y=$\frac{k}{x}$(k为常数,k≠0)的图象经过点D,与AB交于点E,与函数y=2x的图象在第三象限内交于点F,连接AF、EF.
(1)求函数y=$\frac{k}{x}$的表达式,并直接写出E、F两点的坐标;
(2)求△AEF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.某兴趣小组为了了解本校学生参加课外体育锻炼情况,随机抽取本校40名学生进行问卷调查,统计整理并绘制了如下两幅尚不完整的统计图:

根据以上信息解答下列问题:
(1)课外体育锻炼情况统计图中,“经常参加”所对应的圆心角的度数为144°;“经常参加课外体育锻炼的学生最喜欢的一种项目”中,喜欢足球的人数有1人,补全条形统计图.
(2)该校共有1200名学生,请估计全校学生中经常参加课外体育锻炼并喜欢的项目是乒乓球的人数有多少人?
(3)若在“乒乓球”、“篮球”、“足球”、“羽毛球”项目中任选两个项目成立兴趣小组,请用列表法或画树状图的方法求恰好选中“乒乓球”、“篮球”这两个项目的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.
(1)求证:四边形ABCD是菱形;
(2)若∠ADB=30°,BD=6,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x轴的负半轴、y轴的正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形ODEF,BC与OD相交于点M.若经过点M的反比例函数y=$\frac{k}{x}$(x<0)的图象交AB于点N,S矩形OABC=32,tan∠DOE=$\frac{1}{2}$,则BN的长为3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.邻边不相等的平行四边形纸片,减去一个菱形,余下一个四边形,称为第一次操作,在余下的四边形纸片中再剪去一个菱形,余下一个四边形,称为第二次操作,…依此类推,若第n次余下的四边形是菱形,则称原平行四边形为n阶准菱形,如图1,平行四边形ABCD中,若AB=1,BC=2,则平行四边形ABCD为1阶准菱形.
(1)理解与判断:
①邻边长分别为1和3的平行四边形是2阶准菱形.
②如图2,把平行四边形ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F,得到四边形ABFE,四边形ABFE的形状一定是菱形.若AB=2,AD=3,则图2中的平行四边形ABCD是2阶准菱形.
(2)操作、探究、计算:
①已知某平行四边形的边长分别为2,a(a>2)且是3阶准菱形,请画出平行四边形ABCD及裁剪线的所有可能示意图,并在图形下方写出a的值.
②已知平行四边形ABCD是一个2017阶准菱形,其邻边长分别为1,m(1<m<2),请直接写出m的最大值是2018.

查看答案和解析>>

同步练习册答案