精英家教网 > 初中数学 > 题目详情
精英家教网已知:如图,△PQR是等边三角形,∠APB=120°
求证:(1)△PQA∽△BRP;(2)AQ•RB=QR2
分析:(1)由于△PQR是等边三角形,那么∠PQR=∠PRQ=60°,则∠PQA=∠BRP=120°,利用∠PQR是△PQA的外角,可得∠PQR=∠APQ+∠PAQ=60°,而∠APB=120°,利用三角形内角和定理可得∠PAQ+∠RBP=60°,于是有∠APQ=∠RBP,利用相似三角形的判定可得△PQA∽△BRP;
(2)由(1)知△PQA∽△BRP,可得比例线段
AQ
PQ
=
PR
BR
,而△PQR是等边三角形,可知PQ=QR=PR,于是有AQ•RB=QR2
解答:解:(1)∵△PQR是等边三角形,
∴∠PQR=∠PRQ=60°,
∴∠PQA=∠BRP=120°,
又∵∠PQR是△PQA的外角,
∴∠PQR=∠APQ+∠PAQ=60°,
∵∠APB=120°,
∴∠PAQ+∠RBP=60°,
∴∠APQ=∠RBP,
∴△PQA∽△BRP;

(2)∵△PQA∽△BRP,
AQ
PQ
=
PR
BR

又∵△PQR是等边三角形,
∴PQ=RQ=PR,
∴AQ•RB=QR2
点评:本题利用了等边三角形的性质、相似三角形的判定和性质、三角形外角的性质、三角形的内角和定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,△PQR是等边三角形,∠APB=120°,
求证:QR2=AQ•RB.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,△PQR是等边三角形,∠APB=120°
求证:△PAQ∽△BPR.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,△PQR是等边三角形,∠APB=120°,
求证:QR2=AQ•RB.

查看答案和解析>>

科目:初中数学 来源:2009-2010学年福建省厦门市灌口中学九年级(上)期中数学试卷(解析版) 题型:解答题

已知:如图,△PQR是等边三角形,∠APB=120°
求证:(1)△PQA∽△BRP;(2)AQ•RB=QR2

查看答案和解析>>

同步练习册答案