精英家教网 > 初中数学 > 题目详情
(2012•抚顺)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°.点D是直线BC上的一个动点,连接AD,并以AD为边在AD的右侧作等边△ADE.
(1)如图①,当点E恰好在线段BC上时,请判断线段DE和BE的数量关系,并结合图①证明你的结论;
(2)当点E不在直线BC上时,连接BE,其它条件不变,(1)中结论是否成立?若成立,请结合图②给予证明;若不成立,请直接写出新的结论;
(3)若AC=3,点D在直线BC上移动的过程中,是否存在以A、C、D、E为顶点的四边形是梯形?如果存在,直接写出线段CD的长度;如果不存在,请说明理由.
分析:(1)利用等边三角形的性质以及等腰三角形的判定解答即可;
(2)过点E作EF⊥AB,垂足为F,证得△ADC≌△AEF,结合直角三角形中30度的角所对的直角边是斜边的一半解决问题;
(3)从A、C、D、E为顶点的梯形的性质入手,逐步找出解决问题的方案.
解答:解:(1)DE=BE. 理由如下:
∵△ADE为等边三角形,
∴AD=DE=AE,∠AED=60°.
∵∠ABC=30°,∠AED=∠ABC+∠EAB,
∴∠EAB=60°-30°=30°,
∴∠ABC=∠EAB,
∴EB=AE,
∴EB=DE;

(2)如图,

过点E作EF⊥AB,垂足为F,
在△ABC中,∠ABC=30°,
∴∠CAB=60°,
∴∠DAE=∠CAB,
∴∠DAE-∠CAE=∠BAC-∠CAE,
则∠CAD=∠EAF.
又∵AD=AE,∠ACD=∠AFE,
∴△ADC≌△AEF,
∴AC=AF.
在△ABC中,∠ABC=30°,
∴AC=
1
2
AB,
∴AF=BF,
∴EA=EB,
∴DE=EB;

(3)如图,

∵四边形ACDE是梯形,∠ACD=90°,
∴∠CAE=90°.
∵∠CAE=∠CAD+∠EAD,
又在正三角形ADE中,∠EAD=60°,
∴∠CAD=30°.
在直角三角形ACD中,AC=3,∠CAD=30°,
由勾股定理可得CD=
3

若点D与点B重合,AC平行DE,此时CD=3
3
点评:此题综合考查等边三角形的性质,三角形全等的判定与性质,等腰三角形的判定与性质,梯形的性质等知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•抚顺)如图,是五个相同的小正方体搭成的几何体,其主视图是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•抚顺)如图,过点P(2,3)分别作PC⊥x轴于点C,PD⊥y轴于点D,PC、PD分别交反比例函数y=
2
x
(x>0)的图象于点A、B,则四边形BOAP的面积为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•抚顺)如图,小浩从二次函数y=ax2+bx+c(a≠0)的图象中得到如下信息:
①ab<0     
②4a+b=0    
③当y=5时只能得x=0   
④关于x的一元二次方程ax2+bx+c=10有两个不相等的实数根,
你认为其中正确的有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•抚顺)如图,已知一次函数y=-
1
2
x+b的图象经过点A(2,3),AB⊥x轴,垂足为B,连接OA.
(1)求此一次函数的解析式;
(2)设点P为直线y=-
1
2
x+b上的一点,且在第一象限内,经过P作x轴的垂线,垂足为Q.若S△POQ=
5
4
S△AOB,求点P的坐标.

查看答案和解析>>

同步练习册答案