精英家教网 > 初中数学 > 题目详情
(2005•长春)如图所示,边长为1的正方形OABC的顶点A在x轴的正半轴上,将正方形OABC绕点O顺时针旋转30°,使点A落在抛物线y=ax2(a<0)的图象上.
(1)求抛物线y=ax2的函数关系式;
(2)正方形OABC继续按顺时针旋转多少度时,点A再次落在抛物线y=ax2的图象上并求这个点的坐标.
(参考数据:sin30°=,cos30°=,tan30°=.)

【答案】分析:(1)由于OA顺时针旋转30°后A点落在抛物线上,设此时的A点为A1,过A1作A1⊥x轴于M,那么可根据正方形的边长和∠A1OA的度数求出A1M和OM的长,即可得出A1的坐标,然后根据A1的坐标即可求出抛物线的解析式.
(2)根据抛物线的对称性即可得出要经过120°点A才会再落到抛物线的图象上.且此点与A1关于y轴对称,即坐标为(-,-).
解答:解:(1)设旋转后点A落在抛物线上点A1处,OA1=OA=1,
过A1作A1M⊥x轴于M,根据旋转可知:∠A1OM=30°,
则OM=OA1cos30°=,A1M=OA1sin30°=
所以A1,-).
由A1在y=ax2上,代入抛物线解析式得:-=a(2
解得a=-
∴y=-x2

(2)由抛物线关于y轴对称,再次旋转后点A落在抛物线点A2处,点A2与点A1关于y轴对称,
因此再次旋转120°,点A2的坐标为(-,-).
点评:本题考查了图形的旋转变换、二次函数的确定、二次函数的性质等知识点.
练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《一次函数》(06)(解析版) 题型:解答题

(2005•长春)如图1所示,矩形ABCD的两条边在坐标轴上,点D与原点重合,对角线BD所在直线的函数关系式为y=x,AD=8.矩形ABCD沿DB方向以每秒1个单位长度运动,同时点P从点A出发做匀速运动,沿矩形ABCD的边经过点B到达点C,用了14秒.

(1)求矩形ABCD的周长.
(2)如图2所示,图形运动到第5秒时,求点P的坐标.
(3)设矩形运动的时间为t,当0≤t≤6时,点P所经过的路线是一条线段,请求出线段所在直线的函数关系式.
(4)当点P在线段AB或BC上运动时,过点P作x轴、y轴的垂线,垂足分别为E、F,则矩形PEOF是否能与矩形ABCD相似(或位似)?若能,求出t的值;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源:2005年吉林省长春市中考数学试卷(课标卷)(解析版) 题型:解答题

(2005•长春)如图1所示,矩形ABCD的两条边在坐标轴上,点D与原点重合,对角线BD所在直线的函数关系式为y=x,AD=8.矩形ABCD沿DB方向以每秒1个单位长度运动,同时点P从点A出发做匀速运动,沿矩形ABCD的边经过点B到达点C,用了14秒.

(1)求矩形ABCD的周长.
(2)如图2所示,图形运动到第5秒时,求点P的坐标.
(3)设矩形运动的时间为t,当0≤t≤6时,点P所经过的路线是一条线段,请求出线段所在直线的函数关系式.
(4)当点P在线段AB或BC上运动时,过点P作x轴、y轴的垂线,垂足分别为E、F,则矩形PEOF是否能与矩形ABCD相似(或位似)?若能,求出t的值;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源:2005年吉林省长春市中考数学试卷(课标卷)(解析版) 题型:解答题

(2005•长春)如图所示,边长为1的正方形OABC的顶点A在x轴的正半轴上,将正方形OABC绕点O顺时针旋转30°,使点A落在抛物线y=ax2(a<0)的图象上.
(1)求抛物线y=ax2的函数关系式;
(2)正方形OABC继续按顺时针旋转多少度时,点A再次落在抛物线y=ax2的图象上并求这个点的坐标.
(参考数据:sin30°=,cos30°=,tan30°=.)

查看答案和解析>>

科目:初中数学 来源:2005年吉林省长春市中考数学试卷(课标卷)(解析版) 题型:解答题

(2005•长春)如图所示,直线y=-2x+8与两坐标轴分别交于P、Q两点,在线段PQ上有一点A,过点A分别作两坐标轴的垂线,垂足分别为B、C.若矩形ABOC的面积为5,求点A坐标.

查看答案和解析>>

同步练习册答案