精英家教网 > 初中数学 > 题目详情

如图所示,△ABC内接于⊙O,AB是⊙O的直径,点D在⊙O 上,过点C的切线交AD的延长线于点E,且AE⊥CE,

连接CD.

1.求证:DC=BC

2.若AB=10,AC=8,求tan∠DCE的值

 

【答案】

 

1.连接OC.····················   1分

∵OA=OC,

∴∠OAC=∠OCA.

∵CE是⊙O的切线,

∴∠OCE=90°..············ 2分

∵AE⊥CE,

∴∠AEC=∠OCE=90°.

∴OC∥AE.                     . 3分

∴∠OCA=∠CAD.

∴∠CAD=∠BAC.         .·· 4分

.

∴DC=BC.                   .   5分

2.∵AB是⊙O的直径,

∴∠ACB=90°.

∴BC= ····· 6分

∵∠CAE=∠BAC∠AEC=∠ACB=90°,

∴△ACE∽△ABC.                  7分

.

.              8分

∵DC=BC=3,

.                   9分

∴tan∠DCE= .              10分

【解析】略

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

10、如图所示.△ABC内接于⊙O,若∠OAB=28°,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,△ABC内接于⊙O,AB是⊙O的直径,点D在⊙O上,过点C的切线交AD的延长线于点E,且精英家教网AE⊥CE,连接CD.
(1)求证:DC=BC;
(2)若AB=5,AC=4,求tan∠DCE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

19、如图所示,∠ABC内有一点P,在BA、BC边上各取一点P1、P2,使△PP1P2的周长最小.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,△ABC内接于圆O,AB是直径,过A作射线AM,若∠MAC=∠ABC.
(1)求证:AM是圆O的切线;
(2)设D是弧AC的中点,过D作DE⊥AB于E,交AC于F.若AE=2,圆O的半径为5,求cos∠AFE;
(3)设D是弧AC的中点,过D作DE⊥AB于E,交AC于F.连接BD交AC于G,若△DFG的面积为4.5,且DG=3,GC=4,试求△BCG的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)解方程:
1
x+1
+
2
x-1
=
7
x2-1

(2)如图所示,△ABC内接于⊙O,AD是△ABC的边BC上的高,AE是⊙O的直径,连接BE.求 证:△ABE∽△ADC.

查看答案和解析>>

同步练习册答案