解:(1)∵以E(3,0)为圆心,以5为半径的⊙E与x轴交于A,B两点,
∴A(-2,0),B(8,0).
如解答图所示,连接CE.
在Rt△OCE中,OE=AE-OA=5-2=3,CE=5,
由勾股定理得:OC=
=
=4.
∴C(0,-4).
(2)∵点A(-2,0),B(8,0)在抛物线上,
∴可设抛物线的解析式为:y=a(x+2)(x-8).
∵点C(0,-4)在抛物线上,
∴-4=a×2×-8,解得a=
.
∴抛物线的解析式为:y=
(x+2)(x-8)=
x
2-
x-4=
(x-3)
2-
∴顶点F的坐标为(3,-
).
(3)①∵△ABC中,底边AB上的高OC=4,
∴若△ABC与△ABM面积相等,则抛物线上的点M须满足条件:|y
M|=4.
(I)若y
M=4,则
x
2-
x-4=4,
整理得:x
2-6x-32=0,解得x=3+
或x=3-
.
∴点M的坐标为(3+
,4)或(3-
,4);
(II)若y
M=-4,则
x
2-
x-4=-4,
整理得:x
2-6x=0,解得x=6或x=0(与点C重合,故舍去).
∴点M的坐标为(6,-4).
综上所述,满足条件的点M的坐标为:(3+
,4),(3-
,4)或(6,-4).
②直线MF与⊙E相切.理由如下:
由题意可知,M(6,-4).
如解答图所示,连接EM,MF,过点M作MG⊥对称轴EF于点G,
则MG=3,EG=4.
在Rt△MEG中,由勾股定理得:ME=
=
=5,
∴点M在⊙E上.
由(2)知,F(3,-
),∴EF=
,
∴FG=EF-EG=
.
在Rt△MGF中,由勾股定理得:MF=
=
=
.
在△EFM中,∵EM
2+MF
2=5
2+(
)
2=(
)
2=EF
2,
∴△EFM为直角三角形,∠EMF=90°.
∵点M在⊙E上,且∠EMF=90°,
∴直线MF与⊙E相切.
分析:(1)由题意可直接得到点A、B的坐标,连接CE,在Rt△OCE中,利用勾股定理求出OC的长,则得到点C的坐标;
(2)已知点A、B、C的坐标,利用交点式与待定系数法求出抛物线的解析式,由解析式得到顶点F的坐标;
(3)①△ABC中,底边AB上的高OC=4,若△ABC与△ABM面积相等,则抛物线上的点M须满足条件:|y
M|=4.因此解方程y
M=4和y
M=-4,可求得点M的坐标;
②如解答图,作辅助线,可求得EM=5,因此点M在⊙E上;再利用勾股定理求出MF的长度,则利用勾股定理的逆定理可判定△EMF为直角三角形,∠EMF=90°,所以直线MF与⊙E相切.
点评:本题是代数几何综合题,主要考查了抛物线与圆的相关知识,涉及到的考点有二次函数的图象与性质、勾股定理及其逆定理、切线的判定、解一元二次方程等.第(3)①问中,点M在x轴上方或下方均可能存在,注意不要漏解.