精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,∠D=110°,EFD=70°,1=2,求证:∠3=B

证明:

∵∠D=110°,EFD=70°(已知)

∴∠D+EFD=180°

ADEF(

又∵∠1=2(已知)

(内错角相等,两直线平行)

EFBC(

∴∠3=B(

【答案】见解析

【解析】分析: 求出∠D+∠EFD=180°,根据平行线的判定推出AD∥EF,AD∥BC,即可推出答案.

详解:

同旁内角互补,两直线平行;

AD;

BC;

平行于同一条直线的两条直线平行;

两直线平行,同位角相等;

点睛: 本题考查了平行线的性质和判定的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然,题目比较好,难度适中.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在亚丁湾一海域执行护航任务的我海军某军舰由东向西行驶.在航行到B处时,发现灯塔A在我军舰的正北方向500米处;当该军舰从B处向正西方向行驶至达C处时,发现灯塔A在我军舰的北偏东60°的方向.求该军舰行驶的路程.(计算过程和结果均不取近似值)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知n(n≥3,且n为整数)条直线中只有两条直线平行,且任何三条直线都不交于同一个点.如图,当n=3时,共有2个交点;当n=4时,共有5个交点;当n=5时,共有9个交点;依此规律,当共有交点个数为27时,则n的值为(  )

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,大树AB与大数CD相距13m,小华从点B沿BC走向点C,行走一段时间后他到达点E,此时他仰望两棵大树的顶点AD,两条视线的夹角正好为90°,且EA=ED.已知大树AB的高为5m,小华行走的速度为1m/s,小华行走到点E的时间是(

A. 13s B. 8s C. 6s D. 5s

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】折叠三角形纸片ABC,使点A落在BC边上的点F,且折痕DEBC,若∠A=75°,C=60°,则∠BDF=____________________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 M(-62)在第____________象限.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.

(1如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;

(2如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;

(3若改变(2中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AD=5,AB=4,点E,F在直线AD上,且四边形BCFE为菱形.若线段EF的中点为点M,则线段AM的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD中,EBC边的中点,连接AEFCD边上一点,且满足∠DFA=2BAE

1)若∠D=105°DAF=35°.求∠FAE的度数;

2)求证:AF=CD+CF

查看答案和解析>>

同步练习册答案