精英家教网 > 初中数学 > 题目详情
17.要使$5m+\frac{1}{4}$与$\frac{1}{4}+5m$互为相反数,那么m的值是(  )
A.$-\frac{1}{20}$B.$\frac{1}{20}$C.0D.$-\frac{5}{4}$

分析 根据相反数的定义得到:$5m+\frac{1}{4}$+$\frac{1}{4}+5m$=0,由此求得m的值即可.

解答 解:依题意得:$5m+\frac{1}{4}$+$\frac{1}{4}+5m$=0,
解得m=$-\frac{1}{20}$.
故选:A.

点评 本题主要考查了相反数,解题的关键是熟记相反数的定义.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

7.将x2-2$\sqrt{2}$x-3在实数范围内分解因式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知点A(0,1),B(2,3),抛物线y=x2+mx+2,若抛物线与线段AB相交于两点,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.计算:
(1)(-xm-2yn+1)(2yn-xm-1);
(2)(-2x+3y-z-1)(2x-z+3y+1)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.现有一副直角三角板(角度分别为30°、60°、90°和45°、45°、90°),如图1所示,其中一块三角板的直角边AC⊥数轴,AC的中点过数轴原点O,AC=6,斜边AB交数轴于点G,点G对应数轴上的数是3;另一块三角板的直角边AE交数轴于点F,斜边AD交数轴于点H.
(1)如果点H对应的数轴上的数是-1,点F对应的数轴上的数是-3,则△AGH的面积是6,△AHF的面积是3;
(2)如图2,设∠AHF的平分线和∠AGH的平分线交于点M,若∠M=26°,求∠HAO的大小;
(3)如图2,设∠AHF的平分线和∠AGH的平分线交于点M,设∠EFH的平分线和∠FOC的平分线交于点N,设∠HAO=x°(0<x<60),试探索∠N+∠M的和是否为定值,若不是,请说明理由;若是定值,请直接写出此值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如果△ABC三边边长分别为a、b、c,且满足关系式|a+b-42|+(b-18)2=0,且c=30,判断△ABC的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.若代数式(2x2+ax-y+6)-(2bx2-3x-5y-1)的值与字母x所取的值无关,求代数式$\frac{1}{3}$a3-2b2-2(-$\frac{1}{3}$a3+b2)的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计)一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校共用10分钟.下列说法:
①公交车的速度为400米/分钟;
②小刚从家出发5分钟时乘上公交车;
③小刚下公交车后跑向学校的速度是100米/分钟;
④小刚上课迟到了1分钟.
其中正确的个数是(  )
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.计算:(-1)2014-(-3)+$\root{3}{-64}$+$\sqrt{9}$.

查看答案和解析>>

同步练习册答案