精英家教网 > 初中数学 > 题目详情
19.已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面展开图的面积等于(  )
A.24 cm2B.48 cm2C.24π cm2D.12π cm2

分析 根据扇形的面积公式计算即可.

解答 解:圆锥侧面展开图的面积为:$\frac{1}{2}$×2π×4×6=24π,
故选:C.

点评 本题考查的是圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.

练习册系列答案
相关习题

科目:初中数学 来源:2016-2017学年江苏省苏州太仓市第二学期初一期中模拟数学试卷(解析版) 题型:选择题

下列各式中与2mn﹣m2﹣n2相等的是( )

A.(m+n)2 B.﹣(m+n)2 C.(m﹣n)2 D.﹣(m﹣n)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.我们规定:平面内点A到图形G上各个点的距离的最小值称为该点到这个图形的最小距离d,点A到图形G上各个点的距离的最大值称为该点到这个图形的最大距离D,定义点A到图形G的距离跨度为R=D-d.
(1)①如图1,在平面直角坐标系xOy中,图形G1为以O为圆心,2为半径的圆,直接写出以下各点到图形G1的距离跨度:
A(-1,0)的距离跨度;
B($\frac{1}{2}$,-$\frac{\sqrt{3}}{2}$)的距离跨度;
C(-3,2)的距离跨度;
②根据①中的结果,猜想到图形G1的距离跨度为2的所有的点组成的图形的形状是圆.
(2)如图2,在平面直角坐标系xOy中,图形G2为以C(1,0)为圆心,2为半径的圆,直线y=k(x+1)上存在到G2的距离跨度为2的点,求k的取值范围.
(3)如图3,在平面直角坐标系xOy中,射线OA:y=$\frac{\sqrt{3}}{3}$x(x≥0),圆C是以3为半径的圆,且圆心C在x轴上运动,若射线OA上存在点到圆C的距离跨度为2,直接写出圆心C的横坐标xc的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.计算题
(1)-7+13-6+20
(2)(-81)÷$\frac{9}{4}$×(-$\frac{4}{9}$)÷(-16)
(3)(-24)×($\frac{1}{8}$-$\frac{1}{3}$+$\frac{1}{4}$)
(4)-23+(2-3)-2×(-1)2013
(5)[1-(1-0.5×$\frac{1}{3}$)]×|2-(-3)2|.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:
回答下列问题:
(1)这8筐白菜中,最接近25千克的那筐白菜为24.5千克;
(2)以每筐25千克为标准,这8筐白菜总计超过多少千克或不足多少千克?
(3)若白菜每千克售价2.6元,则出售这8筐白菜可卖多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,在长方形ABCD中,AB=CD=8cm,BC=14cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:
(1)BP=2tcm.(用t的代数式表示)
(2)当t为何值时,△ABP≌△DCP?
(3)当点P从点B开始运动,同时,点Q从点C出发,以v cm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,△ABC是一块面积为2700cm2的三角形木板,其中BC=90cm,现在要将这块木板加工成一个正方形的桌面,如图所示,正方形DEFM即是要加工成的桌面,点D、M分别在AB、AC边上,点E、F在BC边上,根据以上数据求出这个正方形桌面的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.若abc>0,则a、b、c三个有理数中负因数的个数是(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图△ABC,AC=BC,∠ACB=90°,AD为角平分线,延长AD交BF于E,E为BF中点,下列结论错误的是(  )
A.AD=BFB.CF=CDC.AC+CD=ABD.BE=CF

查看答案和解析>>

同步练习册答案