分析 (1)由待定系数法可得出k和a;
(2)设点P的坐标为(t,2t),则可得点Q的坐标,从而求出PQ,再根据二次函数的最值问题得出最大长度.
解答 解:(1)由题意,可得8=16a-4(a+1)及8=4k,
解得a=1,k=2,
所以,抛物线的解析式为y=x2-2x,直线的解析式为y=2x.
(2)设点P的坐标为(t,2t)(0≤t≤4),可得点Q的坐标为(t,t2-2t),
则PQ=2t-(t2-2t)=4t-t2=-(t-2)2+4,
所以,当t=2时,PQ的长度取得最大值为4.
点评 本题是二次函数的综合题型,其中涉及到的知识点有抛物线的解析式、直线的解析式,以及二次函数的最值.在求有关最值问题时要注意二次函数的顶点.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com