【题目】每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,
①写出A、B、C的坐标.
②以原点O为对称中心,画出△ABC关于原点O对称的△A1B1C1,并写出A1、B1、C1的坐标.
科目:初中数学 来源: 题型:
【题目】某学校计划组织师生参加哈尔滨冰雪节,感受冰雪艺术的魅力.出租公司现有甲、乙两种型号的客车可供租用,且每辆乙型客车的租金比每辆甲型客车少60元.若该校租用3辆甲种客车,4辆乙种客车,则需付租金1720元.
(1)该出租公司每辆甲、乙两型客车的租金各为多少元?
(2)若学校计划租用6辆客车,租车的总租金不超过1560元,那么最多租用甲型客车多少辆?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(本题满分10分)如图,在四边形ABCD中,AD∥BC,点E在BC的延长线上,CE=BC,连接AE,交CD边于点F,且CF=DF.(1)求证:AD=BC;(2)连接BD、DE,若BD⊥DE,求证:四边形ABCD为菱形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AEF,延长EF交边BC于点G,连结AG,CF,则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤S△FGC=;其中正确的结论有_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△AOB绕着一点旋转到△A′OB′的位置,可以看到点A旋转到点A′,OA旋转到OA′,∠AOB旋转到∠A′OB′,这些都是互相对应的点、线段和角.已知∠AOB=30°,∠AOB′=10°,那么点B的对应点是点______;线段OB的对应线段是线段_____;∠A的对应角是______;旋转中心是点_______;旋转的角度是______度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,三角形的三个顶点的位置如图,为三角形内一点,的坐标为
(1)平移三角形,使点与原点重合,请画出平移后的三角形
(2)直接写出的对应点的坐标;并写出平移的规律.
( , );
( , );
( , );
(3)求三角形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小颖和小强上山游玩,小颖乘坐缆车,小强步行,两人相约在山顶的缆车终点会和,已知小强行走到缆车终点的路程是缆车到山顶的线路长的倍,小颖在小强出发后分才乘上缆车,缆车的平均速度为米/分,若图中的折线表示小强在整个行走过程中的路程(米)与出发时间(分)之间的关系的图像,请回答下列问题.
(1)小强行走的总路程是 米,他途中休息了 分;
(2)分别求出小强在休息前和休息后所走的两段路程的速度;
(3)当小颖到达缆车终点时,小强离缆车终点的路程是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,AB=AC,以AB为直径的⊙O交BC,AC于D,E两点,过点D作⊙O的切线,交AC于点F,交AB的延长线于点G.
(1)求证:EF=CF;
(2)若cos∠ABC=,AB=10,求线段AF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】当值相同时,我们把正比例函数与反比例函数 叫做“关联函数”,可以通过图象研究“关联函数”的性质.小明根据学习函数的经验,先以与为例对“关联函数”进行了探究.下面是小明的探究过程,请你将它补充完整.
(1)如图,在同一坐标系中画出这两个函数的图象.设这两个函数图象的交点分别为,,则点 的坐标为,点的坐标为_______;
(2)点是函数在第一象限内的图象上一个动点(点不与点重合),设点的坐标为,其中且.
①结论:作直线,分别与轴交于点,,则在点运动的过程中,总有.
证明:设直线的解析式为,将点和点的坐标代入,得
解得 则直线的解析式为.
令 ,可得,则点的坐标为.
同理可求,直线的解析式为,点的坐标为________.
请你继续完成证明的后续过程:
②结论:设的面积为,则是的函数.请你直接写出与的函数表达式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com