精英家教网 > 初中数学 > 题目详情
3.将一矩形纸条按如图所示折叠,若∠1=40°,则∠2=110°.

分析 根据平行线的性质得到∠3=∠1=40°,∠2+∠4=180°,由折叠的性质得到∠4=∠5,即可得到结论.

解答 解:∵AB∥CD,
∴∠3=∠1=40°,∠2+∠4=180°,
∵∠4=∠5,
∴∠4=∠5=$\frac{1}{2}$(180°-40°)=70°,
∴∠2=110°,
故答案为:110°.

点评 本题考查了平行线的性质和折叠的知识,题目比较灵活,解答本题的关键熟练掌握平行线的性质.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

13.如图,?ABCD的对角线AC、BD相交于点O,若AB=5,△OCD的周长为16,则AC与BD的和是(  )
A.10B.11C.12D.22

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.在等边△ABC中,作以DB为直角边的等腰Rt△DBC(A、D两点在BC的同侧),则∠ADB=135°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知a=$\sqrt{5}-\sqrt{2}$,b=$\sqrt{5}+\sqrt{2}$,求$\frac{a}{b}$+$\frac{b}{a}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.为进一步缓解城市交通压力,义乌市政府推出公共自行车,公共自行车在任何一个网店都能实现通租通还,某校学生小明统计了周六校门口停车网点各时段的借、还自行车数,以及停车点整点时刻的自行车总数(称为存量)情况,表格中x=1时的y的值表示8:00点时的存量,x=2时的y值表示9:00点时的存量…以此类推,他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.
时段x还车数借车数存量y
7:00-8:0017515
8:00-9:00287n
根据所给图表信息,解决下列问题:
(1)m=13,解释m的实际意义:7:00时自行车的存量;
(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;
(3)已知10:00-11:00这个时段的借车数比还车数的一半还要多2,求此时段的借车数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.判断下列长度的三条线段能否组成三角形:
(1)m-2,m,2(m>2);
(2)x+1,x+m,2x(x>0);
(3)a+1,a+2,a+3(a>0).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.化简$\frac{a-b}{\sqrt{a}+\sqrt{b}}$,甲、乙两同学的解法如下:
甲:$\frac{a-b}{\sqrt{a}+\sqrt{b}}$=$\frac{(a-b)(\sqrt{a}-\sqrt{b})}{(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})}$=$\frac{(a-b)(\sqrt{a}-\sqrt{b})}{a-b}$=$\sqrt{a}$$-\sqrt{b}$;
乙:$\frac{a-b}{\sqrt{a}+\sqrt{b}}$=$\frac{(\sqrt{a})^{2}-(\sqrt{b})^{2}}{\sqrt{a}+\sqrt{b}}$=$\frac{(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})}{\sqrt{a}+\sqrt{b}}$=$\sqrt{a}$-$\sqrt{b}$.
对于甲、乙两同学的解法,正确的判断是(  )
A.甲、乙的解法都不正确B.甲正确、乙不正确
C.甲不正确、乙正确D.甲、乙都不正确

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.a,b,c在数轴上的位置如图,化简|a+b|+|b+c|-|a-c|-|a+c|.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.下列三条线段不能组成直角三角形的是(  )
A.a=8,b=15,c=17B.a=9,b=12,c=15C.a=9,b=40,c=41D.a:b:c=2:3:4

查看答案和解析>>

同步练习册答案