【题目】在平面直角坐标系中,点经过某种变换后得到点,我们把点叫做点的终结点.已知点的终结点为,点的终结点为,点的终结点为,这样依次得到、、、…,若点的坐标为,则点的坐标为( )
A.B.C.D.
科目:初中数学 来源: 题型:
【题目】已知,平面直角坐标系中,A在x轴正半轴,B(0,1),∠OAB=30°.
(1)如图1,已知AB=2.点C在y轴的正半轴上,当△ABC为等腰三角形时,直接写出点C的坐标为 ;
(2)如图2,以AB为边作等边△ABE,AD⊥AB交OA的垂直平分线于D,求证:BD=OE;
(3)如图3,在(2)的条件下,连接DE交AB于F,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知∠MAN=90°,在射线AM上取一点B,在射线AN上取一点C,连接BC,再作点A关于直线BC的对称点D,连接AD、BD,移动点C,当2AD=BC时,∠ABD的度数是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,AC为弦,∠BAC的平分线交⊙O于点D,过点D的切线交AC的延长线于点E.
求证:(1)DE⊥AE;
(2)AE+CE=AB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,计算下列五角星图案中五个顶角的度数和. 即:求∠A+∠B+∠C+∠D+∠E的大小.
(2)如图2,若五角星的五个顶角的度数相等, 求∠1的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的口袋中装有4个完全相同的小球,分别标有数字1、2、3、4,另有一个可以自由旋转的圆盘.被分成面积相等的3个扇形区,分别标有数字1、2、3(如图所示).小颖和小亮想通过游戏来决定谁代表学校参加歌咏比赛,游戏规则为:一人从口袋中摸出一个小球,另一个人转动圆盘,如果所摸球上的数字与圆盘上转出数字之和小于4,那么小颖去;否则小亮去.
(1)用树状图或列表法求出小颖参加比赛的概率;
(2)你认为该游戏公平吗?请说明理由;若不公平,请修改该游戏规则,使游戏公平.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小南发现操场中有一个不规则的封闭图形ABC.为了知道它的面积,他在封闭图形内画出了一个半径为1米的圆,在不远处向圈内掷石子,若石子落在图形ABC以外,则重掷.记录如下:
石子落在圆内(含圆上)的次数 | 14 | 43 | 93 | 150 |
石子落在阴影内的次数 | 23 | 91 | 186 | 300 |
根据以上的数据,小南得到了封闭图形ABC的面积.
请根据以上信息,回答以下问题:
(1)求石子落在圆内(含圆上)的频率;
(2)估计封闭图形ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的位居民,得到这位居民一周内使用共享单车的次数分别为:,,,,,,,,,.
(1)这组数据的中位数是________,众数是________;
(2)计算这位居民一周内使用共享单车的平均次数;
(3)若该小区有名居民,试估计该小区居民一周内使用共享单车的总次数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,由求根公式x1,2=可推出x1+x2=﹣,x1x2=,我们把这个命题叫做韦达定理.设α,β是方程x2﹣5x+3=0的两根,请根据韦达定理求下列各式的值:
(1)α+β= ,αβ= ;
(2);
(3)2α2﹣3αβ+10β.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com