精英家教网 > 初中数学 > 题目详情
(2012•莆田)当a=
1
2
时,代数式
2a2-2
a-1
-2
的值为
1
1
分析:将所求式子第一项分子提取2,并利用平方差公式分解因式,约分后去括号,合并后得到最简结果,然后将a的值代入化简后的式子中计算,即可得到所求式子的值.
解答:解:
2a2-2
a-1
-2
=
2(a+1)(a-1)
a-1
-2
=2(a+1)-2
=2a,
当a=
1
2
时,原式=2×
1
2
=1.
故答案为:1.
点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母出现多项式,应先将多项式分解因式后再约分.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•莆田)如图,某种新型导弹从地面发射点L处发射,在初始竖直加速飞行阶段,导弹上升的高度y(km)与飞行时间x(s)之间的关系式为y=
1
18
x2+
1
6
x
 (0≤x≤10).发射3s后,导弹到达A点,此时位于与L同一水平面的R处雷达站测得AR的距离是2km,再过3s后,导弹到达B点.
(1)求发射点L与雷达站R之间的距离;
(2)当导弹到达B点时,求雷达站测得的仰角(即∠BRL)的正切值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•莆田)如图,在平面直角坐标系中,矩形OABC四个顶点的坐标分别为O(0,0),A(0,3),B(6,3),C(6,0),抛物线y=ax2+bx+c(a≠0)过点A.

(1)求c的值;
(2)若a=-1,且抛物线与矩形有且只有三个交点A、D、E,求△ADE的面积S的最大值;
(3)若抛物线与矩形有且只有三个交点A、M、N,线段MN的垂直平分线l过点0,交线段BC于点F.当BF=1时,求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•莆田质检)如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D是射线CA上的一个动点 (不与A、C重合),DE⊥直线AB于E点,点F是BD的中点,过点F作FH⊥直线AB于H点,连接EF,设AD=x.
(1)①若点D在AC边上,求FH的长(用含x的式子表示);
②若点D在射线CA上,△BEF的面积为S,求S与x的函数关系式,并写出x的取值范围.
(2)若点D在AC边上,点P是AB边上的一个动点,DP与EF相交于O点,当DP+FP的值最小时,猜想DO与PO之间的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•莆田质检)已知抛物线y=a(x-t-2)2+t2(a,t是常数,a≠0,t≠0)的顶点是P点,与x轴交于A(2,0)、B两点.
(1)①求a的值;
②△PAB能否构成直角三角形?若能,求出t的值:若不能,说明理由.
(2)若t>0,点F(0,-1),把抛物线y=a(x-t-2)2+t2向左平移t个单位后与x轴的正半轴交于M、N两点,当t为何值时,过F、M、N三点的圆的面积最小?并求这个圆面积的最小值.

查看答案和解析>>

同步练习册答案