【题目】某超市销售一种商品,成本价为20元/千克,经市场调查,每天销售量y(千克)与销售单价x(元千克)之间的关系如图所示,规定每千克售价不能低于30元,且不高于80元.
(1)直接写出y与x之间的函数关系式;
(2)如果该超市销售这种商品每天获得3900元的利润,那么该商品的销售单价为多少元?
(3)设每天的总利润为w元,当销售单价定为多少元时,该超市每天的利润最大?最大利润是多少元?
【答案】(1)y=﹣x+180;(2)该商品的销售单价为50元;(3)销售单价定为80元时,该超市每天的利润最大,最大利润6000元.
【解析】
(1)将点(30,150)、(80,100)代入一次函数表达式,即可求解;
(2)由题意得:(x20)(x+180)=3900,即可求解;
(3)由题意得:w=(x20)(x+180)=(x100)2+6400,即可求解.
解:(1)将点(30,150)、(80,100)代入一次函数表达式得:,
解得:,
故函数的表达式为:y=﹣x+180;
(2)由题意得:(x﹣20)(﹣x+180)=3900,
解得:x=50或150(舍去150),
故:该商品的销售单价为50元;
(3)由题意得:w=(x﹣20)(﹣x+180)=﹣(x﹣100)2+6400,
∵﹣1<0,故当x<100时,W随x的增大而增大,而30≤x≤80,
∴当x=80时,W由最大值,此时,w=6000,
故销售单价定为80元时,该超市每天的利润最大,最大利润6000元.
科目:初中数学 来源: 题型:
【题目】如图所示,在等腰△ABC中,AB=AC=10cm,BC=16cm.点D由点A出发沿AB方向向点B匀速运动,同时点E由点B出发沿BC方向向点C匀速运动,它们的速度均为1cm/s.连接DE,设运动时间为t(s)(0<t<10),解答下列问题:
(1)当t为何值时,△BDE的面积为7.5cm2;
(2)在点D,E的运动中,是否存在时间t,使得△BDE与△ABC相似?若存在,请求出对应的时间t;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,矩形ABCD中,AB=5,BC=8,点P为BC上一动点(不与端点重合),连接AP,将△ABP沿着AP折叠.点B落到M处,连接BM、CM,若△BMC为等腰三角形,则BP的长度为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,cos∠ABC=,sin∠ACB=,AC=2,分别以AB,AC为边向△ABC形外作正方形ABGF和正方形ACDE,连接EF,点M是EF的中点,连接AM,则△AEF的面积为_____,AM的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】从江岸区某初中九年级1200名学生中随机选取一部分学生进行调查,调查情况:A、上网时间≤1小时;B、1小时<上网时间≤4小时;C、4小时<上网时间≤7小时;D、上网时间>7小时.统计结果制成了如图统计图:以下结论中正确的个数是( )
①参加调查的学生有200人;
②估计校上网不超过7小时的学生人数是900;
③C的人数是60人;
④D所对的圆心角是72°.
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣,两种型号的机器人的工作效率和价格如表:
型号 | 甲 | 乙 |
每台每小时分拣快递件数(件) | 1000 | 800 |
每台价格(万元) | 5 | 3 |
该公司计划购买这两种型号的机器人共10台,并且使这10台机器人每小时分拣快递件数总和不少于8500件
(1)设购买甲种型号的机器人x台,购买这10台机器人所花的费用为y万元,求y与x之间的关系式;
(2)购买几台甲种型号的机器人,能使购买这10台机器人所花总费用最少?最少费用是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了鼓励城市周边的农民的种菜的积极性,某公司计划新建,两种温室80栋,将其售给农民种菜.已知建1个型温室和2个型温室一共需要8.1万元,两种温室的成本和出售价如下表:
型 | 型 | |
成本(万元/栋) | 2.5 | |
出售价(万元/栋) | 3.1 | 3.5 |
(1)求的值;
(2)已知新建型温室不少于38栋不多于50栋且所建的两种温室可全部售出.为了减轻菜农负担,试问采用什么方案建设温室可使利润最少,最少利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣+bx+c的图象经过点A(﹣1,0)和点C(0,2),点D与点C关于x轴对称,点P是x轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q,交直线BD于点M.
(1)求该抛物线所表示的二次函数的表达式.
(2)已知点F(0,),当点P在x轴正半轴上运动时,试求m为何值时,四边形DMQF是平行四边形?
(3)点P在线段AB运动过程中,是否存在点Q,使得以点B、Q、M为顶点的三角形与△BOD相似?若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com