【题目】已知:如图,直线y=3x+3与x轴交于C点,与y轴交于A点,B点在x轴上,△OAB是等腰直角三角形.
(1)求过A、B、C三点的抛物线的解析式;
(2)若直线CD∥AB交抛物线于D点,求D点的坐标;
(3)若P点是抛物线上的动点,且在第一象限,那么△PAB是否有最大面积?若有,求出此时P点的坐标和△PAB的最大面积;若没有,请说明理由.
【答案】(1)y=﹣x2+2x+3;(2)(4,﹣5);(3)在第一象限的抛物线上,存在一点P,使得△ABP的面积最大;P点的坐标为(,),最大值为:.
【解析】
试题分析:(1)求得直线y=3x+3与坐标轴的两交点坐标,然后根据OB=OA即可求得点B的坐标,然后利用待定系数法求得经过A、B、C三点的抛物线的解析式即可;
(2)首先利用待定系数法求得直线AB的解析式,然后根据CD∥AB得到两直线的k值相等,根据直线CD经过点C求得直线CD的解析式,然后求得直线CD和抛物线的交点坐标即可;
(3)本问关键是求出△ABP的面积表达式.这个表达式是一个关于P点横坐标的二次函数,利用二次函数求极值的方法可以确定P点的坐标.
解:(1)令y=3x+3=0得:x=﹣1,
故点C的坐标为(﹣1,0);
令x=0得:y=3x+3=3×0+3=3
故点A的坐标为(0,3);
∵△OAB是等腰直角三角形.
∴OB=OA=3,
∴点B的坐标为(3,0),
设过A、B、C三点的抛物线的解析式y=ax2+bx+c,
解得:
∴解析式为:y=﹣x2+2x+3;
(2)设直线AB的解析式为y=kx+b,
∴
解得:
∴直线AB的解析式为:y=﹣x+3
∵线CD∥AB
∴设直线CD的解析式为y=﹣x+b
∵经过点C(﹣1,0),
∴﹣(﹣1)+b=0
解得:b=﹣1,
∴直线CD的解析式为:y=﹣x﹣1,
令﹣x﹣1=﹣x2+2x+3,
解得:x=﹣1,或x=4,
将x=4代入y=﹣x2+2x+3=﹣16+2×4+3=﹣5,
∴点D的坐标为:(4,﹣5);
(3)存在.如图1所示,设P(x,y)是第一象限的抛物线上一点,
过点P作PN⊥x轴于点N,则ON=x,PN=y,BN=OB﹣ON=3﹣x.
S△ABP=S梯形PNOA+S△PNB﹣S△AOB
=(OA+PN)ON+PNBN﹣OAOB
=(3+y)x+y(3﹣x)﹣×3×3
=(x+y)﹣,
∵P(x,y)在抛物线上,∴y=﹣x2+2x+3,代入上式得:
S△PAB=(x+y)﹣=﹣(x2﹣3x)=﹣(x﹣)2+,
∴当x=时,S△PAB取得最大值.
当x=时,y=﹣x2+2x+3=,
∴P(,).
所以,在第一象限的抛物线上,存在一点P,使得△ABP的面积最大;
P点的坐标为(,),最大值为:.
科目:初中数学 来源: 题型:
【题目】阅读下列材料,并解决后面的问题。
材料:我们知道,n个相同的因数a相乘可记为an,如23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3)
一般地,若an=b (a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logab(即logab=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4)
(1)计算以下各对数的值:log24= ,log216= ,log264= .
(2)观察(1)中三数4、16、64之间满足怎样的关系式?log24、log216、log264之间又满足怎样的关系式?
(3)根据(2)的结果,我们可以归纳出:logaM+logaN=logaM N (a>0且a≠1,M>0,N>0),请你根据幂的运算法则:am=an+m以及对数的定义证明该结论。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,D,E,F,G,H,I是三角形ABC三边上的点,连结EI,EF∥BC, GH∥AC, DI∥AB.
(1)写出与∠IEC是同旁内角的角。
(2)判断∠GHC与∠FEC是否相等,并说明理由。
(3)若EI平分∠FEC,∠C=56°,∠B=50°,求∠EID的度数。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC.
(1)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC=
(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC=
(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?请用式子表示:
(4)如图3,如果AD不是BC上的高,AD=AE,是否仍有上述关系?如有,请你写出来,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=6cm,AC=12cm,动点D以1cm/s 的速度从点A出发到点B止,动点E以2cm/s 的速度从点C出发到点A止,且两点同时运动,当以点A、D、E为顶点的三角形与△ABC相似时,求运动的时间t.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】李大叔想用篱笆围成一个周长为80米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化.
(1)求S与x之间的函数关系式,并写出自变量x的取值范围;
(2)当x是多少时,矩形场地面积S最大?最大面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】全班同学去春游,准备租船游玩,如果比计划减少一条船,则每条船正好坐9个同学,如果比计划增加一条船,每条船正好坐6个同学,则这个班有_____个同学,计划租用_____条船。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿A→B→C和A→D→C的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间函数关系可以用图象表示为( )
A. B.
C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com