精英家教网 > 初中数学 > 题目详情
(2009•广州)如图,边长为1的正方形ABCD被两条与边平行的线段EF、GH分割为四个小矩形,EF与GH交于点P.
(1)若AG=AE,证明:AF=AH;
(2)若∠FAH=45°,证明:AG+AE=FH;
(3)若Rt△GBF的周长为1,求矩形EPHD的面积.

【答案】分析:(1)因为AG=AE?BF=DH.AB=AD,∠ABC=∠ADH?△ABF≌△ADH.(SAS)
(2)将△ADH绕点A顺时针旋转90°后,可得△AFH≌△AFM然后可求得结论.
(3)设BF=x,GB=y,根据线段之间的关系利用勾股定理求出xy的值.
解答:(1)证明:连接AH、AF.
∵ABCD是正方形,
∴AD=AB,∠D=∠B=90°.
∵ADHG与ABFE都是矩形,
∴DH=AG,AE=BF,
又∵AG=AE,
∴DH=BF.
在Rt△ADH与Rt△ABF中,
∵AD=AB,∠D=∠B=90°,DH=BF,
∴Rt△ADH≌Rt△ABF,
∴AF=AH.

(2)证明:将△ADH绕点A顺时针旋转90°到△ABM的位置.
在△AMF与△AHF中,
∵AM=AH,AF=AF,
∠MAF=∠MAH-∠FAH=90°-45°=45°=∠FAH,
∴△AMF≌△AHF.
∴MF=HF.
∵MF=MB+BF=HD+BF=AG+AE,
∴AG+AE=FH.

(3)解:设BF=x,GB=y,则FC=1-x,AG=1-y,(0<x<1,0<y<1)
在Rt△GBF中,GF2=BF2+BG2=x2+y2
∵Rt△GBF的周长为1,
∴BF+BG+GF=x+y+=1
=1-(x+y)
即x2+y2=1-2(x+y)+(x+y)2
整理得2xy-2x-2y+1=0
∴xy-x-y=-
∴矩形EPHD的面积S=PH•EP=FC•AG=(1-x)(1-y)=xy-x-y+1=-
∴矩形EPHD的面积是
点评:本题考查正方形的特殊性质,勾股定理以及正方形中的特殊三角形的应用.
练习册系列答案
相关习题

科目:初中数学 来源:2011年江苏省苏州市张家港二中中考数学一模试卷(解析版) 题型:解答题

(2009•广州)如图,二次函数y=x2+px+q(p<0)的图象与x轴交于A、B两点,与y轴交于点C(0,-1),△ABC的面积为
(1)求该二次函数的关系式;
(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与△ABC的外接圆有公共点,求m的取值范围;
(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年全国中考数学试题汇编《二次函数》(08)(解析版) 题型:解答题

(2009•广州)如图,二次函数y=x2+px+q(p<0)的图象与x轴交于A、B两点,与y轴交于点C(0,-1),△ABC的面积为
(1)求该二次函数的关系式;
(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与△ABC的外接圆有公共点,求m的取值范围;
(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年广东省广州市中考数学试卷(解析版) 题型:解答题

(2009•广州)如图,二次函数y=x2+px+q(p<0)的图象与x轴交于A、B两点,与y轴交于点C(0,-1),△ABC的面积为
(1)求该二次函数的关系式;
(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与△ABC的外接圆有公共点,求m的取值范围;
(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年初中数学第一轮复习教学案例8.2 与圆有关的角(解析版) 题型:解答题

(2009•广州)如图,在⊙O中,∠ACB=∠BDC=60°,AC=2cm.
(1)求∠BAC的度数;(2)求⊙O的周长.

查看答案和解析>>

同步练习册答案