精英家教网 > 初中数学 > 题目详情

如图,已知反比例函数的图像与一次函数的图像交于两点A(-2,1)、B(,-2).

(1)求反比例函数和一次函数的解析式;

(2)若一次函数的图像与轴交于点C,求△AOC(O为坐标原点)的面积.

 

【答案】

(1)12=--1;(2)1

【解析】

试题分析:(1)将A(-2,1)代入1即可求得反比例函数的解析式,从而可求得点B的坐标,再根据待定系数法即可求的一次函数的解析式;

(2)先求得一次函数的图象与坐标轴的交点C的坐标,再根据三角形的面积公式求解即可.

(1)将A(-2,1)代入1得1==-2

又B(,-2)在1上,即-2==1

2过点A(-2,1),B(1,-2)

,解得

1=-2=--1;

(2)令2=--1中=0,得2=-1,C(0,-1)

设A到轴距离为d=∣-  2∣=2

∴S△AOC∣OC∣·d=×1×2=1.

考点:反比例函数和一次函数的图象的交点问题

点评:此类问题是初中数学的重点,在中考中比较常见,一般难度不大,需熟练掌握.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
m
x
图象与一次函数y=kx+b的图象均经过A(-1,4)和B(a,
4
5
)两点,
(1)求B点的坐标及两个函数的解析式;
(2)若一次函数y=kx+b的图象与x轴交于点C,求C点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
kx
(k>0)的图象经过点A(2,m),过点A作AB⊥x轴于点B,且S△AOB=3.若一次函数y=ax+1的图象经过点A,并且与x轴相交于点C,求AO:AC的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
kx
的图象与一次函数y=ax+b的图象交于M(2,m)和N(-1,-4)两点.
(1)求这两个函数的解析式;
(2)求△MON的面积;
(3)请判断点P(4,1)是否在这个反比例函数的图象上,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知反比例函数y1=
kx
和一次函数y2=ax+b的图象相交于点A和点D,且点A的横坐标为1,点D的纵坐标为-1.过点A作AB⊥x轴于点B,△AOB的面积为1.
(1)求反比例函数和一次函数的解析式.
(2)若一次函数y2=ax+b的图象与x轴相交于点C,求∠ACO的度数.
(3)结合图象直接写出:当y1>y2时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知反比例函数y=
k
x
的图象经过第二象限内的点A(-1,m),AB⊥x轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数y=
k
x
的图象上另一点C(n,一2).
(1)求直线y=ax+b的解析式;
(2)设直线y=ax+b与x轴交于点M,求AM的长;
(3)在双曲线上是否存在点P,使得△MBP的面积为8?若存在请求P点坐标;若不存在请说明理由.

查看答案和解析>>

同步练习册答案