精英家教网 > 初中数学 > 题目详情
12.观察下列等式:
$\frac{1}{1×2}$=1-$\frac{1}{2}$,$\frac{1}{2×3}$=$\frac{1}{2}$-$\frac{1}{3}$,$\frac{1}{3×4}$=$\frac{1}{3}$-$\frac{1}{4}$,将以上三个等式相加得:
$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$=1-$\frac{1}{4}$=$\frac{3}{4}$.
(1)猜想并写出:$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$;.
(2)计算:
$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{2006×2007}$=$\frac{2006}{2007}$.
(3)依照上述方法请计算$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…+$\frac{1}{99×101}$的值.

分析 (1)观察已知等式得到一般性规律,写出即可;
(2)根据得出的拆项规律将原式变形后,计算即可得到结果;
(3)根据得出的拆项规律将原式变形后,计算即可得到结果.

解答 解:(1)$\frac{1}{n(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$;
(2)原式=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{2006}$-$\frac{1}{2007}$=1-$\frac{1}{2007}$=$\frac{2006}{2007}$;
(3)原式=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{99}$-$\frac{1}{101}$)=$\frac{1}{2}$(1-$\frac{1}{101}$)=$\frac{50}{101}$,
故答案为:(1)$\frac{1}{n}$-$\frac{1}{n+1}$;(2)$\frac{2006}{2007}$

点评 此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

2.写出命题“对顶角相等”的逆命题如果两个角相等,那么这两个角是对顶角.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.解方程组和不等式(组):
(1)解不等式组:$\left\{\begin{array}{l}{x-3(x-2)≥4}\\{\frac{2x-1}{5}<\frac{x+1}{2}}\end{array}\right.$,并把解集在数轴上表示出来.
(2)解方程组:$\left\{\begin{array}{l}{\frac{2}{3}x-\frac{3y}{4}=\frac{1}{2}}\\{4(x-y)-3(2x+y)=17}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.解方程
①4x-3(5-x)=6                        
②5(x+8)-5=6(2x-7)
③$\frac{2x-1}{3}=\frac{x+2}{4}-1$
④x-$\frac{x-2}{5}$=$\frac{2x-5}{3}$-3.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在菱形ABCD中,AB=5,对角线AC=6,若过点A作AE⊥BC,垂足为E,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.解下列方程
(1)x2-3x=0;                        
(2)x2+10x+16=0.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.?ABCD的对角线相交于点O,OE=OF,四边形AECF是平行四边形吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.如图,E是矩形ABCD的对角线的交点,点F在边AE上,且DF=DC,若∠ADF=25°,则∠BEC=115°.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

2.两个反比例子函数y=$\frac{3}{x}$,y=$\frac{6}{x}$在第一象限内的图象如图所示,点P1,P2,P3,…,P2016在反比例函数y=$\frac{6}{x}$图象上,它们的横坐标分别是x1,x2,x3,…,x2016,纵坐标分别是1,3,5,…,共2016个连续奇数,过点P1,P2,P3,…,P2016分别作y轴的平行线,与y=$\frac{3}{x}$的图象交点依次是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),…,Q2016(x2016,y2016),则y2016=$\frac{4031}{2}$.

查看答案和解析>>

同步练习册答案