精英家教网 > 初中数学 > 题目详情
如图,PA、PB、CD是⊙O的切线,A、B、E是切点,CD分别交PA、PB于C、D两点,若∠APB=40°,PA=5,则下列结论:①PA=PB=5;②△PCD的周长为5;③∠COD=70°.正确的个数为(  )
分析:根据切线长定理,可判断①正确;将△PCD的周长转化为PA+PB,可判断②错误;连接OA、OB、OE,求出∠AOB,再由∠COD=∠COE+∠EOD=
1
2
(∠AOE+∠BOE)=
1
2
∠AOB,可判断③正确;
解答:解:∵PA、PB是⊙O的切线,
∴PA=PB,故①正确;
∵PA、PB、CD是⊙O的切线,
∴CA=CE,DE=DB,
∴△PCD的周长=PC+CE+DE+PD=PC+CA+PD+DB=PA+PB=2PA=10,故②错误;
连接OA、OB、OE,

∠AOB=180°-∠APB=140°,
∴∠COD=∠COE+∠EOD=
1
2
(∠AOE+∠BOE)=
1
2
∠AOB=70°,故③正确.
综上可得①③正确,共2个.
故选B.
点评:本题考查了切线的性质及切线长定理,解答本题的关键是熟练掌握:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,PA、PB是⊙O的切线,切点分别为A、B,点C在⊙O上,如果∠P=50°,那么∠ACB等于
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

6、如图,PA、PB分别切⊙O于点A、B,M是劣弧AB上的一个动点(点A、B除外),过M作⊙O的切线分别交PA、PB于点C、D.设CM的长为x,△PCD的周长为y,在下列图象中,大致表示y与x之间的函数关系的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,PA、PB分别切⊙0于A、B,PA、BO的延长线交于点Q,连AB,若sin∠AQO=
4
5
,则tan∠ABP的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•槐荫区二模)(1)某路段改造工程中,需沿AC方向开山修路(如图1所示),为了加快施工进度,要在小山的另一边同时施工.从AC上的一点B取∠ABD=140°,BD=1000米,∠D=50°.为了使开挖点E在直线AC上,那么DE的距离应该是多少米?(供选用的三角函数值:sin50°≈0.7660,cos50°≈0.6428,tan50°≈1.192)
(2)如图,PA、PB是⊙O的切线,AC是⊙O的直径,∠P=50°,求∠BOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,PA、PB是⊙O的切线,切点分别为A、B,若∠APB=40°,则∠ACB=
70
70
°.

查看答案和解析>>

同步练习册答案