精英家教网 > 初中数学 > 题目详情
已知抛物线过点(-2,4),与y轴的交点为B(0,1)。
(1)求抛物线的解析式及其顶点A的坐标;
(2)在抛物线上是否存在一点C,使∠BAC=90?若不存在说明理由;若存在,求出点C的坐标;
(3)P、Q为抛物线上的两点,且横坐标分别为4和6,在x轴、y轴上分别有两个动点M、N,当PM +MN +NQ最小时,求出M、N两点的坐标。
解:(1)∵ 抛物线过(- 2,4),(0,1) 
               ∴  ∴
              ∴抛物线的解析式为,其顶点为(2,0)
(2)假设存在C点使∠BAC = 90°,
        设C(t,),
        过C作CD⊥x轴于D,则D(t,0), 
       ∴
      ∵ ∠BAC = 90°,∠ADC = 90°
       ∴ ∠BAO =∠ACD
       ∴ △BAO ∽△ACD
      ∴
      ∴解得t1 = 2(舍),t2 = 10
      ∴ 存在C(10,16)使∠BAC = 90°
(3)∵ 点P在抛物线上,且横坐标分别为4和6
         ∴ P(4,1),Q(6,4)
         ∴ 点P关于x轴的对称点为P'(4,- 1),
              点Q关于y轴的对称点Q'(- 6,4)
        ∵
       ∴ 当P'、M、N、Q'共线时,最小
      ∵ P'Q'的解析式为
     ∴ 此时M(2,0),N(0,1)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线过点A(2,0),B(-1,0),与y轴交于点C,且OC=2.则这条抛物线的解析式为(  )
A、y=x2-x-2B、y=-x2+x+2C、y=x2-x-2或y=-x2+x+2D、y=-x2-x-2或y=x2+x+2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线过点A(0,6),B(2,0),C(7,
52
).
(1)求抛物线的解析式;
(2)若D是抛物线的顶点,E是抛物线的对称轴与直线AC的交点,F与E关于D对称,求证:∠CFE=∠AFE;
(3)在y轴上是否存在这样的点P,使△AFP与△FDC相似?若有请求出所有符和条件的点P的坐标;若没有,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线过点A(-2,-3),B(2,5)和C(0,-3)
(1)求这条抛物线的解析式;
(2)当x=
 
时,y有最
 
值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线过点A(-1,0),B(0,6),对称轴为直线x=1
(1)求抛物线的解析式;
(2)画出抛物线的草图;
(3)根据图象回答:当x取何值时,y>0.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线过点A(-1,0)、B(3,0)、C(0,-3).
(1)求该抛物线的解析式及其顶点的坐标;
(2)若P是抛物线上C、B两点之间的一动点,请连接CP、BP,是否存在点P,使得四边形OBPC的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案