精英家教网 > 初中数学 > 题目详情

【题目】如图,某校园内有一块菱形的空地ABCD,为了美化环境,现要进行绿化,计划在中间建设一个面积为S的矩形绿地EFGH,其中,点E、F、G、H分别在菱形的四条边上,AB=a米,BE=BF=DG=DH=x米,∠A=60°
(1)求S关于x的函数关系式,并直接写出自变量x的取值范围;
(2)若a=100,求S的最大值,并求出此时x的值.

【答案】
(1)解:∵四边形ABCD是菱形,

∴AB=AD=a米,

∵BE=BF=DH=DG=x米,∠A=60°,

∴AE=AH=(a﹣x)米,∠ADC=120°,

∴△AHE是等边三角形,即HE=(a﹣x)米,

如图,过点P作DP⊥HG于点P,

∴HG=2HP,∠HDP= ∠ADC=60°,

则HG=2HP=2DHsin∠HDP=2x× = x(米),

∴S= x(a﹣x)=﹣ x2+ ax (0<x<a)


(2)解:当a=100时,S=﹣ x2+100 x=﹣ (x﹣50)2+2500

∴当x=50时,S取得最大值,最大值为2500 m2


【解析】(1)根据菱形的性质得△AHE是等边三角形,即HE=(a﹣x)米,过点P作DP⊥HG于点P,则HG=2HP=2DHsin∠HDP= x米,由矩形面积公式可得;(2)将a=100代入上式,配方成顶点式可得其最值情况.
【考点精析】本题主要考查了菱形的性质的相关知识点,需要掌握菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知AD与AB,CD交于A,D两点,EC,BF与AB,CD交于E,C,B,F,且1=2,B=C,

(1)说明CEBF.

(2)你能得出B=3和A=D这两个结论吗?若能,写出你得出结论的过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB=8,BC=12,点E是BC的中点,连接AE,将△ABE沿AE折叠,点B落在点F处,连接FC,则tan∠ECF=(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B的路径运动,且速度为每秒1cm,设出发的时间为t秒.问t为何值时,BCP为等腰三角形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点AB的坐标分别为A0a),Bba),且ab满足(a32+|b6|0,现同时将点AB分别向下平移3个单位,再向左平移2个单位,分别得到点AB的对应点CD,连接ACBDAB

1)求点CD的坐标及四边形ABDC的面积S四边形ABCD

2)在y轴上是否存在一点M,连接MCMD,使SMCDS四边形ABCD?若存在这样一点,求出点M的坐标,若不存在,试说明理由;

3)点P是直线BD上的一个动点,连接PAPO,当点PBD上移动时(不与BD重合),直接写出∠BAP,∠DOP,∠APO之间满足的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c过点B(3,0),C(0,3),D为抛物线的顶点.

(1)求抛物线的解析式以及顶点坐标;
(2)如果点C关于抛物线y=﹣x2+bx+c对称轴的对称点为E点,连接BC,BE,求tan∠CBE的值;
(3)点M是抛物线对称轴上一点,且△DAM和△BCE相似,求点M坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小芸在自家楼房的窗户A处,测量楼前的一棵树CD的高.现测得树顶C处的俯角为45°,树底D处的俯角为60°,楼底到大树的距离BD为20米.请你帮助小芸计算树的高度(精确到0.1米).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在四边形ABCDAC平分∠BADCEABEAEAD+AB.请你猜想∠1和∠2有什么数量关系?并证明你的猜想

猜想   

证明

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,边长为2菱形ABCD中,∠DAB60°,连接对角线AC,以AC为边作第二个菱形ACC1D1,使∠D1AC60°;连接AC1,再以AC1为边作第三个菱形AC1C2D2,使∠D2AC160°,按此规律所作的第6个菱形的边长为_____

查看答案和解析>>

同步练习册答案