精英家教网 > 初中数学 > 题目详情

【题目】“绿水青山就是金山银山”,为保护生态环境,AB两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表:

村庄

清理养鱼网箱人数/人

清理捕鱼网箱人数/人

总支出/元

A

15

9

57000

B

10

16

68000

1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;

2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,则至少安排多少人清理养鱼网箱?

3)在第(2)问的条件下,若要求清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?

【答案】12000元;3000元 (218人 (3)见解析

【解析】

(1)设清理养鱼网箱的人均费用为元,清理捕鱼网箱的人均费用为元,根据题意列出二元一次方程组再进行求解即可;

(2)设人清理养鱼网箱,则人清理捕鱼网箱,根据题意列一元一次不等式即可求解;

(3)根据题意列出不等式,再根据(2)的结论求不等式整数解即可.

解:(1)设清理养鱼网箱的人均费用为元,清理捕鱼网箱的人均费用为元,

根据题意,得:

解得:

答:清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元;

(2)设人清理养鱼网箱,则人清理捕鱼网箱,

根据题意,得:

解得:

答:至少安排18人清理养鱼网箱.

(3)根据题意,得:

解得:

由(2)知

所以

为整数,

则分配清理人员方案有两种:

方案一:18人清理养鱼网箱,22人清理捕鱼网箱;

方案二:19人清理养鱼网箱,21人清理捕鱼网箱.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰RtABC,使BAC=90°,设点B的横坐标为x,设点C的纵坐标为y,能表示y与x的函数关系的图象大致是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在中,的中点,边上一动点,连接.若 (当点与点重合时,的值为)

小明根据学习函数的经验,对函数随自变量的变化而变化的规律进行了探究.

下面是小明的探究过程,请补充完整.

通过取点、画图、计算,得到了的几组值,如下表:

说明:补全表格时,相关数值保留一位小数.

(参考数据:)

如图2,描出剩余的点,并用光滑的曲线画出该函数的图象.

观察图象,下列结论正确的有 _

①函数有最小值,没有最大值

②函数有最小值,也有最大值

③当时,随着的增大而增大

④当时,随着的增大而减小

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,长方形的三个顶点的坐标为,且轴,点是长方形内一点(不含边界).

1)求的取值范围.

2)若将点向左移动8个单位,再向上移动2个单位到点,若点恰好与点关于轴对称,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为调查某市市民上班时最常用的交通工具的情况,随机抽取了部分市民进行调查,要求被调查者从:自行车,:家庭汽车,:公交车,:电动车,:其他五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题:

1)本次调查中,一共调查了 名市民;扇形统计图中,项对应的扇形圆心角是 °

2)补全条形统计图;

3)若甲、乙两人上班时从四种交通工具中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两人恰好选择同一种交通工具上班的概率

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学开展以“我最喜欢的职业”为主题的调查活动,通过对学生的随机抽样调查得到一组数据,如图是根据这组数据绘制成的不完整统计图.

1)把折线统计图补充完整;

2)求出扇形统计图中,公务员部分对应的圆心角的度数;

3)若从被调查的学生中任意抽取一名,求取出的这名学生最喜欢的职业是“教师”的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在某海域,一般指挥船在C处收到渔船在B处发出的求救信号,经确定,遇险抛锚的渔船所在的B处位于C处的南偏西45°方向上,且BC=60海里;指挥船搜索发现,在C处的南偏西60°方向上有一艘海监船A,恰好位于B处的正西方向.于是命令海监船A前往搜救,已知海监船A的航行速度为30海里/小时,问渔船在B处需要等待多长时间才能得到海监船A的救援?(参考数据:结果精确到0.1小时)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知反比例函数y=﹣的图象与直线ykxk0)相交于点AB,以AB为底作等腰三角形,使∠ACB120°,且点C的位置随着k的不同取值而发生变化,但点C始终在某一函数图象上,则这个图象所对应的函数解析式为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bx3A10),B(﹣30),直线AD交抛物线于点D,点D的横坐标为﹣2,点Pmn)是线段AD上的动点.

1)求直线AD及抛物线的解析式;

2)过点P的直线垂直于x轴,交抛物线于点Q,求线段PQ的长度lm的关系式,m为何值时,PQ最长?

3)在平面内是否存在整点(横、纵坐标都为整数)R,使得PQDR为顶点的四边形是平行四边形?若存在,直接写出点R的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案