精英家教网 > 初中数学 > 题目详情
14.旅游公司在景区内配置了50辆观光车供游客租赁使用,假定每辆观光车一天内最多只能出租一次,且每辆车的日租金x(元)是5的倍数.发现每天的营运规律如下:当x不超过100元时,观光车能全部租出;当x超过100元时,每辆车的日租金每增加5元,租出去的观光车就会减少1辆.已知所有观光车每天的管理费是1100元.
(1)优惠活动期间,为使观光车全部租出且每天的净收入为正,则每辆车的日租金至少应为多少元?(注:净收入=租车收入-管理费)
(2)当每辆车的日租金为多少元时,每天的净收入最多?

分析 (1)观光车全部租出每天的净收入=出租自行车的总收入-管理费,根据不等关系:净收入为正,列出不等式求解即可;
(2)由函数解析式是分段函数,在每一段内求出函数最大值,比较得出函数的最大值.

解答 解:(1)由题意知,若观光车能全部租出,则0<x≤100,
由50x-1100>0,
解得x>22,
又∵x是5的倍数,
∴每辆车的日租金至少应为25元;
(2)设每天的净收入为y元,
当0<x≤100时,y1=50x-1100,
∵y1随x的增大而增大,
∴当x=100时,y1的最大值为50×100-1100=3900;
当x>100时,
y2=(50-$\frac{x-100}{5}$)x-1100
=50x-$\frac{1}{5}$x2+20x-1100
=-$\frac{1}{5}$x2+70x-1100
=-$\frac{1}{5}$(x-175)2+5025,
当x=175时,y2的最大值为5025,
5025>3900,
故当每辆车的日租金为175元时,每天的净收入最多是5025元.

点评 本题用分段函数模型考查了一次函数,二次函数的性质与应用,解决问题的关键是弄清题意,分清收费方式.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

4.如图,在正方形ABCD中,△ABE和△CDF为直角三角形,∠AEB=∠CFD=90°,AE=CF=5,BE=DF=12,则EF的长是(  )
A.7B.8C.7$\sqrt{2}$D.7$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

5.计算:$\frac{5{c}^{2}}{6ab}•\frac{3b}{{a}^{2}c}$=$\frac{5c}{2{a}^{3}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.先化简,再求值:$(\frac{1}{x}-\frac{1}{x+2})•\frac{{{x^2}-4}}{2}$,其中x=3.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.计算:$\sqrt{3}$($\sqrt{3}$+$\sqrt{27}$)=12.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.如图,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是(  )
A.$\frac{3}{4}$B.$\frac{4}{3}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.化简$\frac{{m}^{2}}{m-n}$+$\frac{{n}^{2}}{n-m}$的结果是(  )
A.m+nB.n-mC.m-nD.-m-n

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.在等腰三角形ABC中,AB=AC,分别在射线AB、CA上取点D、E,连结DE,过点E作EF∥AB交直线BC于点F,直线BC与DE所在直线交于点M.
猜想:如图①,点D在边AB延长线上,点E在边AC上,且BD=CE,则线段DM、EM的大小关系为DM=EM.
探究:如图②,点D、E分别在边AB、CA延长线上,且BD=CE,判断线段DM、EM的大小关系,并加以证明.
拓展:如图③,点D在边AB上(点D不与点A、B重合),点E在边CA的延长线上,其它条件不变,若BD=1,CE=4,DM=0.7,则线段DE的长为2.1.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.下列命题中,是真命题的为(  )
A.四个角相等的四边形是矩形
B.四边相等的四边形是正方形
C.对角线相等的四边形是菱形
D.对角线互相垂直的四边形是平行四边形

查看答案和解析>>

同步练习册答案