14£®ÔĶÁ²ÄÁÏ£º
·½³Ìx2-x-2=0ÖУ¬Ö»º¬ÓÐÒ»¸öδ֪ÊýÇÒδ֪ÊýµÄ´ÎÊýΪ2£®ÏñÕâÑùµÄ·½³Ì½Ð×öÒ»Ôª¶þ´Î·½³Ì£®°Ñ·½³ÌµÄ×ó±ß·Ö½âÒòʽµÃµ½£¨x-2£©£¨x+1£©=0£®ÎÒÃÇÖªµÀÁ½¸öÒòʽ³Ë»ýΪ0£¬ÆäÖÐÓÐÒ»¸öÒòʽΪ0¼´¿É£¬Òò´Ë·½³Ì¿ÉÒÔת»¯Îª£ºx-2=0»ò       x+1=0
½âÕâÁ½¸öÒ»´Î·½³ÌµÃ£ºx=2»òx=-1£®
ËùÒÔÔ­·½³ÌµÄ½âΪ£ºx=2»òx=-1£®
ÉÏÊö½«·½³Ìx2-x-2=0ת»¯Îªx-2=0»òx+1=0µÄ¹ý³Ì£¬Êǽ«¶þ´Î½µÎªÒ»´ÎµÄ¡°½µ´Î¡±¹ý³Ì£¬´Ó¶øʹµÃÎÊÌâµÃµ½½â¾ö£®
·ÂÕÕÉÏÃæ½µ´ÎµÄ·½·¨£¬½â¾öÏÂÁÐÎÊÌ⣺
£¨1£©½â·½³Ìx2-3x=0
£¨2£©½â·½³Ì×飺$\left\{\begin{array}{l}{x^2}-9{y^2}=0\\ x+y=4\end{array}\right.$
֪ʶǨÒÆ£º
¸ù¾ÝÓÐÀíÊýµÄ³Ë·¨·¨Ôò¡°Á½ÊýÏà³Ë£¬ÒìºÅµÃ¸º¡±£¬³¢ÊԽⲻµÈʽ£º£¨x-3£©£¨x+1£©£¼0£®

·ÖÎö £¨1£©ÀûÓÃÌáÈ¡¹«Òòʽ·¨¶ÔµÈʽµÄ×ó±ß½øÐÐÒòʽ·Ö½â£¬½«Æäת»¯ÎªÁ½Òòʽ֮»ýΪ0µÄÐÎʽ£»
£¨2£©½«Ô­·½³Ì×éת»¯ÎªÁ½¸öÒ»Ôª¶þ´Î·½³Ì×飬Ȼºó½â·½³Ì×é¼´¿É£»
£¨3£©¸ù¾ÝÌâÒâÁгö¹ØÓÚxµÄ²»µÈʽ×飬ͨ¹ý½â²»µÈʽ×é¿ÉÒÔÇóµÃxµÄÈ¡Öµ·¶Î§£®

½â´ð ½â£º£¨1£©ÓÉÔ­·½³Ì£¬µÃ
x£¨x-3£©=0£¬
½âÕâÁ½¸öÒ»´Î·½³ÌµÃ£ºx=0»òx=3£®
ËùÒÔÔ­·½³ÌµÄ½âΪ£ºx=0»òx=3£®

£¨2£©ÓÉÔ­·½³Ì×éµÃµ½£º£¨¢ñ£©$\left\{\begin{array}{l}x+3y=0\\ x+y=4\end{array}\right.$»ò£¨¢ò£© $\left\{\begin{array}{l}x-3y=0\\ x+y=4\end{array}\right.$£¬
½â£¨¢ñ£©µÃ$\left\{\begin{array}{l}x=6\\ y=-2\end{array}\right.$£¬
½â£¨¢ò£©µÃ$\left\{\begin{array}{l}x=3\\ y=1\end{array}\right.$£¬
¡àÔ­·½³Ì×éµÄ½âΪ$\left\{\begin{array}{l}x=6\\ y=-2\end{array}\right.$»ò$\left\{\begin{array}{l}x=3\\ y=1\end{array}\right.$£»

£¨3£©Ô­²»µÈʽ¿É»¯Îª£º
¢Ù$\left\{\begin{array}{l}x-3£¾0\\ x+1£¼0\end{array}\right.$»ò  ¢Ú$\left\{\begin{array}{l}x-3£¼0\\ x+1£¾0\end{array}\right.$
½â²»µÈ×é¢ÙÎ޽⣬
½â²»µÈʽ¢Ú¿ÉµÃ-1£¼x£¼3£¬
ËùÒÔÔ­²»µÈʽµÄ½â¼¯Îª-1£¼x£¼3£®

µãÆÀ ±¾Ì⿼²éÁËÒ»ÔªÒ»´Î²»µÈʽ×éµÄÓ¦Óã®ÎÞÂÛÊǽâ¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬»¹Êǽâ¹ØÓÚxµÄ¶þÔª¶þ´Î·½³Ì×飬¶¼ÊÇÏȽµÃÝ£¬È»ºó½â·½³Ì£¨·½³Ì×飩£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®Ä³µØÁ¬Ðøͳ¼ÆÁË60ÌìµÄÈÕ×î¸ßÆøΣ¬²¢»æÖÆÁËÈçͼËùʾµÄÉÈÐÎͳ¼Æͼ£¬¸ù¾Ýͳ¼Æͼ¿ÉÖªÕâ60ÌìÈÕ×î¸ßÆøεÄƽ¾ùֵΪ31¡æ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Á½Ô²µÄ°ë¾¶·Ö±ðÊÇ·½³Ìx2-6x+8=0µÄÁ½¸ù£¬ÇÒÔ²Ðľàd=6£¬ÔòÁ½Ô²µÄλÁD¹ØϵÊÇ£¨¡¡¡¡£©
A£®ÍâÇÐB£®ÄÚÇÐC£®ÍâÀëD£®Ïཻ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Èçͼ£¬Ò»ÌõÌú·ÐÞµ½Ò»¸ö´å×Ó±ßʱ£¬Ðè¹ÕÍäÈƵÀ¶ø¹ý£¬Èç¹ûµÚÒ»´Î¹ÕµÄ½ÇAÊÇ105¡ã£¬µÚ¶þ²Å¹ÕµÄ½ÇBÊÇ135¡ã£¬µÚÈý´Î¹ÕµÄ½ÇÊÇ¡ÏC£¬ÕâʱµÄµÀ·ǡºÃºÍµÚÒ»´Î¹ÕÍä֮ǰµÄµÀ·ƽÐУ¬ÄÇô¡ÏCµÄ¶ÈÊýΪ£¨¡¡¡¡£©
A£®130¡ãB£®135¡ãC£®140¡ãD£®150¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º£¨x+3£©£¨x-1£©+£¨x+2£©£¨x-2£©-2£¨x-1£©2£¬ÆäÖÐx=$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®µÈÑüÈý½ÇÐÎÁ½±ß³¤·Ö±ðΪ3cmºÍ5cm£¬Çó¸ÃµÈÑüÈý½ÇÐεÄÖܳ¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ÒÑÖª¶þ´Îº¯Êýy=-$\frac{1}{4}$x2+$\frac{3}{2}$x+4µÄͼÏóÓëyÖá½»ÓÚµãA£¬ÓëxÖá½»ÓÚB¡¢CÁ½µã£¬Æä¶Ô³ÆÖáÓëxÖá½»ÓÚµãD£¬Á¬½ÓAC£®
£¨1£©µãAµÄ×ø±êΪ£¨0£¬4£©£¬µãCµÄ×ø±êΪ£¨8£¬0£©£»
£¨2£©Ï߶ÎACÉÏÊÇ·ñ´æÔÚµãE£¬Ê¹µÃ¡÷EDCΪµÈÑüÈý½ÇÐΣ¿Èô´æÔÚ£¬Çó³öËùÓзûºÏÌõ¼þµÄµãEµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®º¯Êýy=$\frac{\sqrt{x+5}}{x-3}$ÖÐ×Ô±äÁ¿xµÄÈ¡Öµ·¶Î§ÊÇx¡Ý-5ÇÒx¡Ù3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®Ö±½ÇÈý½ÇÐÎÖУ¬ÓÐÈýµãA£¨2£¬0£©¡¢B£¨-3£¬-4£©¡¢O£¨0£¬0£©£¬Ôò¡÷AOBµÄÃæ»ýΪ£¨¡¡¡¡£©
A£®4B£®6C£®5D£®3

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸